Thm* x,n,m: . x n & x m  (nnsub(n;x) = nnsub(m;x)  n = m) | [cancel_sub] |
Thm* x,n,m: . n x & m x  (nnsub(x;n) = nnsub(x;m)  n = m) | [sub_cancel] |
Thm* n,k,r: . ( q: . k = q n+r & r<n)  nmod(k;n) = r | [mod_unique] |
Thm* n,k,q: . ( r: . k = q n+r & r<n)  ndiv(k;n) = q | [ndiv_unique] |
Thm* k,n: . 0<n  ( r,q: . k = q n+r & r<n) | [da] |
Thm* P:(   ). P(0) & ( n: . ( m: . m<n  P(m))  P(n))  ( n: . P(n)) | [gen_induction] |
Thm* P:(   ). ( n: . P(n))  ( n: . P(n) & ( m: . m<n  P(m))) | [wop] |
Thm* n,m: . n m & m n  n = m | [less_equal_antisym] |
Thm* m,n,x,q: . m x & n q  m+n x+q | [less_eq_less_eq_mono] |
Thm* m,n,x: . m n & n x  m x | [less_eq_trans] |
Thm* m,n: . 0<m & 0<n  (pre(m) = pre(n)  m = n) | [inv_pre_eq] |
Thm* m,n: . m+n = 0  m = 0 & n = 0  | [add_eq_0] |
Thm* m,n: .
Thm* 0 m = 0
Thm* & m 0 = 0
Thm* & 1 m = m
Thm* & m 1 = m
Thm* & (m+1) n = m n+n
Thm* & m (n+1) = m+m n  | [mult_clauses] |
Thm* m,n: . (m<n & n m) | [less_eq_antisym] |
Thm* m,n: . m<n & m = n  n<m | [less_cases_imp] |
Thm* m,n: . m<n & n = m+1  m+1<n | [less_not_suc] |
Thm* m,n: . m<n & m+1 = n  m+1<n | [less_suc_eq_cor] |
Thm* 'a:S, f:('a  ), x1,x2:'a. f(x1) & f(x2)  x1 = x2 | [fun_eq_lemma] |
Thm* m,n: . (m<n & n<m+1) | [less_less_suc] |
Thm* m,n: . (m<n & n<m) | [less_antisym] |
Thm* m,n,x: . m<n & n<x  m<x | [less_trans] |
Thm* m: . nnsub(0;m) = 0 & nnsub(m;0) = m | [sub_0] |