Thm* x,n,m: . x n & x m  (nnsub(n;x) = nnsub(m;x)  n = m) | [cancel_sub] |
Thm* x,n,m: . n x & m x  (nnsub(x;n) = nnsub(x;m)  n = m) | [sub_cancel] |
Thm* m,x: . m x  ( n: . nnsub(x;m) n  x m+n) | [sub_less_eq_add] |
Thm* n,m: . n m  n<m+1 | [less_eq_imp_less_suc] |
Thm* n,m: . n<m  ( x: . n<m+x) | [less_imp_less_add] |
Thm* b,c: . c b  ( a: . nnsub(a;nnsub(b;c)) = nnsub(a+c;b)) | [sub_sub] |
Thm* a,b: . b a  ( c: . nnsub(a;b)<c  a<b+c) | [less_eq_sub_less] |
Thm* c,b: . c b  ( a: . nnsub(a+b;c) = a+nnsub(b;c)) | [less_eq_add_sub] |
Thm* n,m,i: . i<nnsub(n;m)  i+m<n | [less_sub_add_less] |
Thm* m,n: . n<m  n nnsub(m;1) | [sub_less_or] |
Thm* n: . 0<n  ( m: . pre(m) pre(n)  m n) | [inv_pre_less_eq] |
Thm* m: . 0<m  ( n: . pre(m)<pre(n)  m<n) | [inv_pre_less] |
Thm* n: . 0<n  ( k: . nmod(nmod(k;n);n) = nmod(k;n)) | [mod_mod] |
Thm* n: . 0<n  ( j,k: . nmod(nmod(j;n)+nmod(k;n);n) = nmod(j+k;n)) | [mod_plus] |
Thm* n: . 0<n  ( q,r: . nmod(q n+r;n) = nmod(r;n)) | [mod_times] |
Thm* n,r: . r<n  ( q: . nmod(q n+r;n) = r) | [mod_mult] |
Thm* n: . 0<n  ndiv(0;n) = 0 | [zero_div] |
Thm* n: . 0<n  nmod(0;n) = 0 | [zero_mod] |
Thm* n: . 0<n  ( k: . nmod(k n;n) = 0) | [mod_eq_0] |
Thm* n,k: . k<n  nmod(k;n) = k | [less_mod] |
Thm* n,r: . r<n  ( q: . ndiv(q n+r;n) = q) | [div_mult] |
Thm* n,k,r: . ( q: . k = q n+r & r<n)  nmod(k;n) = r | [mod_unique] |
Thm* n,k,q: . ( r: . k = q n+r & r<n)  ndiv(k;n) = q | [ndiv_unique] |
Thm* n: . 0<n  ( k: . ndiv(k;n) k) | [div_less_eq] |
Thm* k,n: . 0<n  ( r,q: . k = q n+r & r<n) | [da] |
Thm* P:(   ). P(0) & ( n: . ( m: . m<n  P(m))  P(n))  ( n: . P(n)) | [gen_induction] |
Thm* P:(   ). ( n: . P(n))  ( n: . P(n) & ( m: . m<n  P(m))) | [wop] |
Thm* n,m: . n m & m n  n = m | [less_equal_antisym] |
Thm* m,n: . n<m  ( x: . m = n+x+1 ) | [less_add_1] |
Thm* m,n,x: . m n  m x n x | [less_mono_mult] |
Thm* m,n: . m<n  m n | [less_imp_less_or_eq] |
Thm* m,n,x,q: . m x & n q  m+n x+q | [less_eq_less_eq_mono] |
Thm* m,n,x: . m n & n x  m x | [less_eq_trans] |
Thm* m,n,x: . m+x<n+x  m<n | [less_mono_add_inv] |
Thm* m,n,x: . m<n  m+x<n+x | [less_mono_add] |
Thm* m,n,x: . n x  (m+n = x  m = nnsub(x;n)) | [add_eq_sub] |
Thm* m,n: . m<n  n<m+1 | [less_suc_not] |
Thm* m,n: . 0<m & 0<n  (pre(m) = pre(n)  m = n) | [inv_pre_eq] |
Thm* m,n: . 0<n  (m = pre(n)  m+1 = n ) | [pre_suc_eq] |
Thm* m,n: . n m  nnsub(m;n)+n = m  | [sub_add] |
Thm* m,n: . n = 0  m<m+n | [less_add_nonzero] |
Thm* m,n: . m+n = m  n = 0  | [add_inv_0] |
Thm* m,n: . m<n & m = n  n<m | [less_cases_imp] |
Thm* m,n: . m<n & n = m+1  m+1<n | [less_not_suc] |
Thm* m,n: . m<n & m+1 = n  m+1<n | [less_suc_eq_cor] |
Thm* m,n: . m+1 n  m<n | [or_less] |
Thm* m,n: . m<n  m+1 n | [less_or] |
Thm* 'a:S, f:('a  ), x1,x2:'a. f(x1) & f(x2)  x1 = x2 | [fun_eq_lemma] |
Thm* m,n,x: . m<n & n<x  m<x | [less_trans] |