| Some definitions of interest. |
|
hexists_unique | Def exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
| | Thm* 'a:S. exists_unique (('a  hbool)  hbool) |
|
b_exists_unique | Def b_exists_unique('a;x.p(x))
Def == ( x:'a. p(x)) ( x,y:'a. (p(x) p(y))  (x = y)) |
| | Thm* 'a:Type, p:('a  ). b_exists_unique('a;x.p(x))  |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
himplies | Def implies == p: . q: . p  q |
| | Thm* implies (hbool  hbool  hbool) |
|
bimplies | Def p  q ==  p  q |
| | Thm* p,q: . p  q  |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |