PrintForm
Definitions
Lemmas
hol
list
2
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
list
axiom
'b
,
'a
:S,
x
:
'b
,
f
:(
'b
'a
(
'a
List)
'b
).
(
fn1
:((
'a
List)
'b
).
(
fn1
(nil) =
x
& (
h
:
'a
,
t
:
'a
List.
fn1
(cons(
h
;
t
)) =
f
(
fn1
(
t
),
h
,
t
)))
& (
fn1
,
y
:((
'a
List)
'b
).
& (
fn1
(nil) =
x
& (
h
:
'a
,
t
:
'a
List.
fn1
(cons(
h
;
t
)) =
f
(
fn1
(
t
),
h
,
t
))
& (
&
y
(nil) =
x
& (
& (
h
:
'a
,
t
:
'a
List.
y
(cons(
h
;
t
)) =
f
(
y
(
t
),
h
,
t
))
& (
& (
fn1
=
y
)
By:
RewriteOfThm Thm:
hlist
axiom
(SimpsetC [`hol_to_nuprl`;`bequal`])
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
Lemmas
hol
list
2
Sections
HOLlib
Doc