hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def x:AB(x) == x:AB(x)

is mentioned by

Thm* P:(). P(0) & (n:P(n P(n+1))  (n:P(n))[induction]
Thm* m,n:m+1 = n+1    m = n[inv_suc]
Thm* n:n+1 = 0  [not_suc]
Thm* m,n:m = n  m = n[nat_eq_to_int]
Thm* m,n:. Dec(m = n)[decidable__nat]
Thm* n:x:'af:('a'a). n>0  ncompose(f;n;x) = f(ncompose(f;n-1;x))[ncompose_pos]
Thm* f:('a'a), x:'a. ncompose(f;0;x) = x[ncompose_zero]
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a[ncompose_wf]
Def zero_rep == @x:. (y:x = suc_rep(y )[hzero_rep]

In prior sections: core fun 1 well fnd int 1 bool 1 hol hol min hol bool

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc