Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hallDef all == p:'ax:'a. (p(x))
Thm* 'a:S. all  (('a  hbool)  hbool)
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
assertDef b == if b True else False fi
Thm* b:b  Prop
handDef and == p:q:pq
Thm* and  (hbool  hbool  hbool)
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
hequalDef equal == x:'ay:'ax = y
Thm* 'a:S. equal  ('a  'a  hbool)
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
himpliesDef implies == p:q:pq
Thm* implies  (hbool  hbool  hbool)
bimpliesDef pq == p  q
Thm* p,q:pq  
hboolDef hbool == 
Thm* hbool  S
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
hindDef hind == 
Thm* hind  S
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolbfalseifthenelseassertintnatural_numbersetapply
functionuniverseequalmemberpropandfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc