| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| his_num_rep | Def is_num_rep
Def == m: .  P:  
Def == m: .  ((P(zero_rep)) ( n: . (P(n))  (P(suc_rep(n)))))  (P(m)) |
| | | Thm* is_num_rep (hind  hbool) |
|
| ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| band | Def p q == if p q else false fi |
| | | Thm* p,q: . (p q)  |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| himplies | Def implies == p: . q: . p  q |
| | | Thm* implies (hbool  hbool  hbool) |
|
| bimplies | Def p  q ==  p  q |
| | | Thm* p,q: . p  q  |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hind | Def hind ==  |
| | | Thm* hind S |
|
| hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | | Thm* zero_rep hind |
|
| hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | | Thm* suc_rep (hind  hind) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |