Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bimpliesDef pq == p  q
Thm* p,q:pq  
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
boolbfalseifthenelseassertintnatural_numbersetapply
functionuniverseequalmemberpropandfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc