| Some definitions of interest. |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
his_num_rep | Def is_num_rep
Def == m: .  P:  
Def == m: .  ((P(zero_rep)) ( n: . (P(n))  (P(suc_rep(n)))))  (P(m)) |
| | Thm* is_num_rep (hind  hbool) |
|
htype_definition | Def type_definition == P:'a  . rep:'b 'a.  type_definition('a;'b;P;rep) |
| | Thm* 'a,'b:S. type_definition (('a  hbool)  ('b  'a)  hbool) |
|
type_definition | Def type_definition('a;'b;P;rep)
Def == ( x',x'':'b. rep(x') = rep(x'') 'a  x' = x'')
Def == & ( x:'a. (P(x))  ( x':'b. x = rep(x'))) |
| | Thm* 'a,'b:Type, P:('a  ), rep:('b 'a). type_definition('a;'b;P;rep) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hind | Def hind ==  |
| | Thm* hind S |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |