| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
habs_num | Def abs_num == n: . @m: . (n = rep_num(m) ) |
| | Thm* abs_num (hind  hnum) |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |