| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
habs_num | Def abs_num == n: . @m: . (n = rep_num(m) ) |
| | Thm* abs_num (hind  hnum) |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hrep_num | Def rep_num == n: . ncompose(suc_rep;n;zero_rep) |
| | Thm* rep_num (hnum  hind) |
|
hsuc | Def suc == n: . n+1 |
| | Thm* suc (hnum  hnum) |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |