| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |