Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtract
int_eqapplyfunctionrecursive_def_notice
universememberpropimpliesfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc