| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | | Thm* zero_rep hind |
|
| hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | | Thm* suc_rep (hind  hind) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |