Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
assertDef b == if b True else False fi
Thm* b:b  Prop
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
boolifthenelseassertintnatural_numbersetapply
functionuniversememberpropfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num Sections HOLlib Doc