| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
his_sum_rep | Def is_sum_rep == f:  'a 'b  .  u:'a+'b. (f = (rep_sum(u))) |
| | Thm* 'a,'b:S. is_sum_rep ((hbool  'a  'b  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
habs_sum | Def abs_sum == f:  'a 'b  . @u:'a+'b. (rep_sum(u) = f   'a 'b  ) |
| | Thm* 'a,'b:S. abs_sum ((hbool  'a  'b  hbool)  hsum('a; 'b)) |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hrep_sum | Def rep_sum
Def == u:'a+'b. InjCase(u
Def == u:'a+'b. InjCase; p. b: . x:'a. y:'b. (x = p) b
Def == u:'a+'b. InjCase; q. b: . x:'a. y:'b. (y = q)   b) |
| | Thm* 'a,'b:S. rep_sum (hsum('a; 'b)  hbool  'a  'b  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hsum | Def hsum('a; 'b) == 'a+'b |
| | Thm* 'a,'b:S. hsum('a; 'b) S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |