| | Some definitions of interest. |
|
| habs_sum | Def abs_sum == f:  'a 'b  . @u:'a+'b. (rep_sum(u) = f   'a 'b  ) |
| | | Thm* 'a,'b:S. abs_sum ((hbool  'a  'b  hbool)  hsum('a; 'b)) |
|
| his_sum_rep | Def is_sum_rep == f:  'a 'b  .  u:'a+'b. (f = (rep_sum(u))) |
| | | Thm* 'a,'b:S. is_sum_rep ((hbool  'a  'b  hbool)  hbool) |
|
| hrep_sum | Def rep_sum
Def == u:'a+'b. InjCase(u
Def == u:'a+'b. InjCase; p. b: . x:'a. y:'b. (x = p) b
Def == u:'a+'b. InjCase; q. b: . x:'a. y:'b. (y = q)   b) |
| | | Thm* 'a,'b:S. rep_sum (hsum('a; 'b)  hbool  'a  'b  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
| iso_pair | Def iso_pair('a;'b;P;rep;abs)
Def == ( r:'b. abs(r) = (@a:'a. (r = rep(a)))) & type_definition('b;'a;P;rep) |
| | | Thm* 'a,'b:S, P:('b  ), rep:('a 'b), abs:('b 'a).
Thm* iso_pair('a;'b;P;rep;abs) Prop |
|
| choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
| label | Def t ...$L == t |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |
|
| type_definition | Def type_definition('a;'b;P;rep)
Def == ( x',x'':'b. rep(x') = rep(x'') 'a  x' = x'')
Def == & ( x:'a. (P(x))  ( x':'b. x = rep(x'))) |
| | | Thm* 'a,'b:Type, P:('a  ), rep:('b 'a). type_definition('a;'b;P;rep) Prop |