Definitions hol sum Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
habs_sumDef abs_sum == f:'a'b. @u:'a+'b. (rep_sum(u) = f  'a'b)
Thm* 'a,'b:S. abs_sum  ((hbool  'a  'b  hbool)  hsum('a'b))
his_sum_repDef is_sum_rep == f:'a'bu:'a+'b. (f = (rep_sum(u)))
Thm* 'a,'b:S. is_sum_rep  ((hbool  'a  'b  hbool)  hbool)
hrep_sumDef rep_sum
Def == u:'a+'b. InjCase(u
Def == u:'a+'b. InjCasepb:x:'ay:'b. (x = p)b
Def == u:'a+'b. InjCaseqb:x:'ay:'b. (y = q)b)
Thm* 'a,'b:S. rep_sum  (hsum('a'b hbool  'a  'b  hbool)
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}

About:
booluniondecidesetapply
functionuniverseequalmembertrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol sum Sections HOLlib Doc