PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
sum
axiom
2
'c
,
'b
,
'a
:S,
f
:(
'a
'c
),
g
:(
'b
'c
).
(
h
:((
'a
+
'b
)
'c
). (
x
:
'a
.
h
(inl(
x
)) =
f
(
x
)) & (
x
:
'b
.
h
(inr(
x
)) =
g
(
x
)))
& (
h
,
y
:((
'a
+
'b
)
'c
).
& (
(
x
:
'a
.
h
(inl(
x
)) =
f
(
x
)) & (
x
:
'b
.
h
(inr(
x
)) =
g
(
x
))
& (
& (
x
:
'a
.
y
(inl(
x
)) =
f
(
x
))
& (
& (
x
:
'b
.
y
(inr(
x
)) =
g
(
x
))
& (
& (
h
=
y
)
By:
RewriteOfThm Thm:
hsum
axiom
2
HNC
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc