Definitions mb automata 1 GenAutomata Doc

Defined Operators mentioned in mb automata 1 (and any they in turn depend on)

Defl[tvar]
Defl[tfvar]
Deftrace(l)[ttrace]
Defl'[tpvar]
Deff[topr]
Deft1 t2[tapp]
Defterm_iterate(v; p; op; f; tr; a; t)[term_iterate]
Deft[typ]
DeftTop[st_top]
Defab[arrow]
Deft.fun[sig_fun]
Deft.lbl[dec_lbl]
Deft.typ[dec_typ]
Defmk_dec(lbl, typ)[mk_dec]
DefCase lbl : typ = > body(lbl;typ)[case_mk_dec]
Deft.lbl[smt_lbl]
Deft.term[smt_term]
Deft.typ[smt_typ]
Defmk_smt(lbl, term, typ)[mk_smt]
Defrelname_eq(x)[relname_eq]
Defrelname_other(x)[relname_other]
Defmk_rel(name, args)[mk_rel]
Deft.kind[eff_kind]
Deft.typ[eff_typ]
Deft.smt[eff_smt]
Deft.var[frame_var]
Deft.typ[frame_typ]
Deft.acts[frame_acts]
Deft.kind[pre_kind]
Deft.rel[pre_rel]
Defioa_all(I; i.A(i))[ioa_all]
Deftc1(r;de)[tc1]
Defrel_arg_typ(rn;i;de)[rel_arg_typ]
Deftappend(tr;a)[tappend]
Defst_lift(rho)[st_lift]
DefFmla[pred]
DefP Q[pred_and]
Defr[pred_rel]
Defterm_vars(t)[term_vars]
DefP Q[iff]core
DefP Q[implies]core
DefProp[prop]core
Defx:A. B(x)[all]core
Deff o g[compose]fun 1
Defunzip(as)[unzip]mb list 1
Defmap(f;as)[map]list 1
DefSQType(T)[sq_type]sqequal 1
Def(a=b)[ts_eq]
DefTerm[term]
DefSimpleType[st]
Deftrace_env(d)[trace_env]
DefDecl[decl]mb declaration
Defts()[ts]
Def(d)[sigma]mb record
DefLabel[lbl]mb label
Defb[assert]bool 1
Defst_eq(s1;s2)[st_eq]
Defniltrace()[niltrace]
Def[[t]] e s a tr[term_mng]
Defapply_alist(as;l;d)[apply_alist]
Def(x l)[l_member]mb list 1
DefP Q[or]core
Defif b t else f fi[ifthenelse]bool 1
Def[nat]int 1
DefAB[le]core
DefA[not]core
Defts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(f)= > op(f) fvar(x)= > f(x) trace(P)= > t(P) end_ts_case [ts_case]
DefCase ts_trace(x) = > body(x) cont[case_ts_trace]
DefCase ts_fvar(x) = > body(x) cont[case_ts_fvar]
DefCase ts_op(x) = > body(x) cont[case_ts_op]
DefCase ts_pvar(x) = > body(x) cont[case_ts_pvar]
Defl1 = l2[eq_lbl]mb basic
DefCase x = > body(x) cont[case_relname_other]
Defl[i][select]list 1
Defground_ptn(p)[ground_ptn]mb basic
DefCase ptn_var(x) = > body(x) cont[case_ptn_var]mb basic
DefCase ptn_int(x) = > body(x) cont[case_ptn_int]mb basic
Defnth_tl(n;as)[nth_tl]list 1
Deftl(l)[tl]list 1
Defhd(l)[hd]list 1
Definl(x) = > body(x) cont[case_inl]prog 1
Definr(x) = > body(x) cont[case_inr]prog 1
Def[it]core
Deft_iterate(l;n;t)[t_iterate]mb tree
DefDefault = > body[case_default]prog 1
DefCase ts_var(x) = > body(x) cont[case_ts_var]
DefCase(value) body[case]prog 1
Deffalse[bfalse]bool 1
DefTree(E)[tree]mb tree
Defts_var(x)[ts_var]
Deftree_leaf(x)[tree_leaf]mb tree
Defts_fvar(x)[ts_fvar]
Defts_trace(x)[ts_trace]
Defts_pvar(x)[ts_pvar]
Defts_op(x)[ts_op]
Deftree_node( < x, y > )[node]mb tree
DefUnit[unit]core
Deftrue[btrue]bool 1
DefCase tree_leaf(x) = > body(x) cont[case_tree_leaf]mb tree
Defpq[band]bool 1
DefCase x;y = > body(x;y) cont[case_node]mb tree
DefY[ycomb]core
Deft.eff[ioa_eff]
Deft.pre[ioa_pre]
Deft.init[ioa_init]
Deft.da[ioa_da]
Deft.ds[ioa_ds]
Deft.name[rel_name]
Deftre.P[tproj]
Deft.trace[trace_env_trace]
Deftr | P[trace_projection]mb events
Defkind(a)[kind]mb record
Def1of(t)[pi1]core
Deft.frame[ioa_frame]
Deft.rel[sig_rel]
Deft.args[rel_args]
Deft.proj[trace_env_proj]
Def2of(t)[pi2]core
Defi:I. C(i)[col_union]mb collection
Defmk_ioa(ds, da, init, pre, eff, frame)[mk_ioa]
DefFalse[false]core
Def||as||[length]list 1
DefCase eq(x) = > body(x) cont[case_relname_eq]
Def[bool]bool 1
Defmk_trace_env(trace, proj)[mk_trace_env]
Defas @ bs[append]list 1
Defr.l[r_select]mb record
DefTop[top]core
DefCollection(T)[col]mb collection
Defa + b[col_add]mb collection
Def < x > [col_singleton]mb collection
Def(first x as s.t. P(x) else d)[find]mb list 1
DefP Q[rev_implies]core
DefPattern[ptn]mb basic
DefCase ptn_pr( < x, y > ) = > body(x;y) cont[case_lbl_pair]mb basic
Defx=yAtom[eq_atom]bool 1
Defi=j[eq_int]bool 1
DefCase ptn_atom(x) = > body(x) cont[case_ptn_atom]mb basic
Deftree_con(E;T)[tree_con]mb tree
Deftree_node(x)[tree_node]mb tree
Defx c[col_member]mb collection
Defdecl_type(d;x)[decl_type]mb declaration
Deffilter(P;l)[filter]mb list 1
Defptn_con(T)[ptn_con]mb basic
Defij[le_int]bool 1
Defreduce(f;k;as)[reduce]list 1
Defi < j[lt_int]bool 1
Defb[bnot]bool 1

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
unititvoidintnatural_numberaddsubtractint_eqlessless_than
atomtokenatom_equnioninlinr
decidesetisectlambdaapplyfunction
ycombrecuniverseequalaxiommembersqequaltoppropimpliesandorfalse
trueallexists

Definitions mb automata 1 GenAutomata Doc