Who Cites affects trace rel? | |
affects_trace_rel | Def affects_trace_rel(e;k;r) == reduce(x,y. affects_trace(e;k;x) y;false;r.args) |
Thm* e:(LabelLabel), k:Label, r:rel(). affects_trace_rel(e;k;r) | |
decl | Def Decl == LabelType |
Thm* Decl{i} Type{i'} | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
trace_env | Def trace_env(d) == ((d) List)(LabelLabel) |
Thm* d:Decl. trace_env(d) Type | |
sigma | Def (d) == l:Labeldecl_type(d;l) |
Thm* d:Decl. (d) Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
term_mng | Def [[t]] e s a tr == iterate(statevar x- > s.x statevar x'- > s.x funsymbol f- > e.f freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t) |
tproj | Def tre.P == tre.trace | tre.proj(P) |
Thm* d:Decl, tre:trace_env(d), P:Label. tre.P (d) List | |
trace_projection | Def tr | P == filter(x.P(kind(x));tr) |
Thm* d:Decl, tr:(d) List, P:(Label). tr | P (d) List | |
kind | Def kind(a) == 1of(a) |
Thm* d:Decl, a:(d). kind(a) Label | |
Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern | |
list_accum | Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive) |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
tappend | Def tappend(tr;a) == mk_trace_env(tr.trace @ [a], tr.proj) |
Thm* d:Decl, tr:trace_env(d), a:(d). tappend(tr;a) trace_env(d) | |
trace_env_trace | Def t.trace == 1of(t) |
Thm* d:Decl, t:trace_env(d). t.trace (d) List | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
trace_env_proj | Def t.proj == 2of(t) |
Thm* d:Decl, t:trace_env(d). t.proj LabelLabel | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
relname_mng | Def [[rn]] rho e == Case(rn) Case eq(Q) = > x,y. x = y [[Q]] rho Case R = > e.R Default = > True |
st_mng | Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s) |
Thm* rho:Decl, s:SimpleType. [[s]] rho Type | |
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type | |
top | Def Top == Void given Void |
Thm* Top Type | |
affects_trace | Def affects_trace(e;k;t) == iterate(statevar x- > false statevar x'- > false funsymbol x- > false freevar x- > false trace(P)- > e(P,k) x(y)- > x y over t) |
Thm* e:(LabelLabel), k:Label, t:Term. affects_trace(e;k;t) | |
bor | Def p q == if p true else q fi |
Thm* p,q:. (p q) | |
filter | Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l) |
Thm* T:Type, P:(T), l:T List. filter(P;l) T List | |
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B | |
term_iter | Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t) |
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
term_iterate | Def term_iterate(v; p; op; f; tr; a; t) == t_iterate(x.ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(c)= > op(c) fvar(d)= > f(d) trace(P)= > tr(P) end_ts_case ;a;t) |
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
ts_case | Def ts_case(x) var(a)= > v(a) var'(b)= > p(b) opr(f)= > op(f) fvar(x)= > f(x) trace(P)= > t(P) end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A | |
case_default | Def Default = > body(value,value) == body |
r_select | Def r.l == r(l) |
Thm* d:Decl, r:{d}, l:Label. r.l d(l) | |
case_relname_other | Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case | Def Case(value) body == body(value,value) |
decl_type | Def decl_type(d;x) == d(x) |
Thm* dec:Decl, x:Label. decl_type(dec;x) Type | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
mk_trace_env | Def mk_trace_env(trace, proj) == < trace,proj > |
Thm* d:Decl, trace:(d) List, proj:(LabelLabel). mk_trace_env(trace, proj) trace_env(d) | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
About: