|  | Who Cites term  free  vars? | 
|  | 
| term_free_vars | Def term_free_vars(t)
== term_iterate(  f.nil;  f.nil;  f.nil;  v.[v];  P.nil;  x,y. x @ y;
 t) | 
 | |  | Thm*  t:Term. term_free_vars(t)  Label List | 
|  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive) | 
 | |  | Thm*  T:Type, as,bs:T List. (as @ bs)  T List | 
|  | 
| rel | Def rel() == relname()  (Term List) | 
 | |  | Thm* rel()  Type | 
|  | 
| term | Def Term == Tree(ts()) | 
 | |  | Thm* Term  Type | 
|  | 
| relname | Def relname() == SimpleType+Label | 
 | |  | Thm* relname()  Type | 
|  | 
| ts | Def ts() == Label+Label+Label+Label+Label | 
 | |  | Thm* ts()  Type | 
|  | 
| st | Def SimpleType == Tree(Label+Unit) | 
 | |  | Thm* SimpleType  Type | 
|  | 
| lbl | Def Label == {p:Pattern|  ground_ptn(p) } | 
 | |  | Thm* Label  Type | 
|  | 
| list_accum | Def list_accum(x,a.f(x;a);y;l)
 == Case of l; nil  y ; b.l'  list_accum(x,a.f(x;a);f(y;b);l')
 (recursive) | 
|  | 
| rel_name | Def t.name == 1of(t) | 
 | |  | Thm*  t:rel(). t.name  relname() | 
|  | 
| term_mng2 | Def [[t]] e s s' a tr
== iterate(statevar x- > s.x
 statevar x'- > s'.x
 funsymbol x- > e.x
 freevar x- > a
 trace(P)- > tr.P
 x(y)- > x(y)
 over t) | 
|  | 
| tproj | Def tre.P == tre.trace | tre.proj(P) | 
 | |  | Thm*  d:Decl, tre:trace_env(d), P:Label. tre.P  (  d) List | 
|  | 
| trace_env_trace | Def t.trace == 1of(t) | 
 | |  | Thm*  d:Decl, t:trace_env(d). t.trace  (  d) List | 
|  | 
| trace_projection | Def tr | P == filter(  x.P(kind(x));tr) | 
 | |  | Thm*  d:Decl, tr:(  d) List, P:(Label    ). tr | P  (  d) List | 
|  | 
| kind | Def kind(a) == 1of(a) | 
 | |  | Thm*  d:Decl, a:(  d). kind(a)  Label | 
 | |  | Thm*  M:sm{i:l}(), a:M.action. kind(a)  Label  &  kind(a)  Pattern | 
|  | 
| pi1 | Def 1of(t) == t.1 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 1of(p)  A | 
|  | 
| rel_args | Def t.args == 2of(t) | 
 | |  | Thm*  t:rel(). t.args  Term List | 
|  | 
| trace_env_proj | Def t.proj == 2of(t) | 
 | |  | Thm*  d:Decl, t:trace_env(d). t.proj  Label   Label    | 
|  | 
| pi2 | Def 2of(t) == t.2 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 2of(p)  B(1of(p)) | 
|  | 
| filter | Def filter(P;l) == reduce(  a,v. if P(a)  [a / v] else v fi;nil;l) | 
 | |  | Thm*  T:Type, P:(T    ), l:T List. filter(P;l)  T List | 
|  | 
| reduce | Def reduce(f;k;as) == Case of as; nil  k ; a.as'  f(a,reduce(f;k;as'))  (recursive) | 
 | |  | Thm*  A,B:Type, f:(A   B   B), k:B, as:A List. reduce(f;k;as)  B | 
|  | 
| relname_mng | Def [[rn]] rho e 
== Case(rn)
 Case eq(Q) = >  x,y. x = y  [[Q]] rho
 Case R = > 
 e.R
 Default = >  True | 
|  | 
| st_mng | Def [[s]] rho == t_iterate(st_lift(rho);  x,y. x   y;s) | 
 | |  | Thm*  rho:Decl, s:SimpleType. [[s]] rho  Type | 
|  | 
| st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) | 
 | |  | Thm*  rho:(Label   Type). st_lift(rho)  (Label+Unit)   Type | 
|  | 
| top | Def Top == Void given Void | 
 | |  | Thm* Top  Type | 
|  | 
| ground_ptn | Def ground_ptn(p)
 == Case(p)
 Case ptn_var(v) = > 
 false  Case ptn_pr( < x, y > ) = > 
 ground_ptn(x)   ground_ptn(y)
 Default = >  true  (recursive) | 
 | |  | Thm*  p:Pattern. ground_ptn(p)    | 
|  | 
| assert | Def  b == if b  True else False fi | 
 | |  | Thm*  b:  . b  Prop | 
|  | 
| ptn | Def Pattern == rec(T.ptn_con(T)) | 
 | |  | Thm* Pattern  Type | 
|  | 
| term_iter | Def iterate(statevar x- > v(x)
 statevar x''- > v'(x')
 funsymbol op- > opr(op)
 freevar f- > fvar(f)
 trace(tr)- > trace(tr)
 a(b)- > comb(a;b)
 over t)
== term_iterate(  x.v(x);  x'.v'(x');  op.opr(op);  f.fvar(f);  tr.trace(tr);  a,b. comb(a;b);
 t) | 
 | |  | Thm*  A:Type, v,v',opr,fvar,trace:(Label   A), comb:(A   A   A), t:Term.
iterate(statevar x- > v(x)
 statevar x''- > v'(x')
 funsymbol op- > opr(op)
 freevar f- > fvar(f)
 trace(tr)- > trace(tr)
 a(b)- > comb(a,b)
 over t)  A | 
|  | 
| term_iterate | Def term_iterate(v;
 p;
 op;
 f;
 tr;
 a;
 t)
== t_iterate(  x.ts_case(x)
 var(a)= > v(a)
 var'(b)= > p(b)
 opr(c)= > op(c)
 fvar(d)= > f(d)
 trace(P)= > tr(P)
 end_ts_case ;a;t) | 
 | |  | Thm*  A:Type, v,op,f,p,tr:(Label   A), a:(A   A   A), t:Term. term_iterate(v;p;op;f;tr;a;t)  A | 
|  | 
| t_iterate | Def t_iterate(l;n;t)
 == Case(t)
 Case x;y = > 
 n(t_iterate(l;n;x),t_iterate(l;n;y))
 Case tree_leaf(x) = > 
 l(x)
 Default = >  True
 (recursive) | 
 | |  | Thm*  E,A:Type, l:(E   A), n:(A   A   A), t:Tree(E). t_iterate(l;n;t)  A | 
|  | 
| ts_case | Def ts_case(x)
 var(a)= > v(a)
 var'(b)= > p(b)
 opr(f)= > op(f)
 fvar(x)= > f(x)
 trace(P)= > t(P)
 end_ts_case 
== Case(x)
 Case ts_var(a) = > 
 v(a)
 Case ts_pvar(b) = > 
 p(b)
 Case ts_op(f) = > 
 op(f)
 Case ts_fvar(x) = > 
 f(x)
 Case ts_trace(P) = > 
 t(P)
 Default = >  | 
 | |  | Thm*  A:Type, v,op,f,p,t:(Label   A), x:ts().
ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case  A | 
|  | 
| case_default | Def Default = >  body(value,value) == body | 
|  | 
| r_select | Def r.l == r(l) | 
 | |  | Thm*  d:Decl, r:{d}, l:Label. r.l  d(l) | 
|  | 
| case_relname_other | Def Case x = >  body(x) cont(x1,z)
== (  x1.inr(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) | 
|  | 
| case_relname_eq | Def Case eq(x) = >  body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| case | Def Case(value) body == body(value,value) | 
|  | 
| tree | Def Tree(E) == rec(T.tree_con(E;T)) | 
 | |  | Thm*  E:Type. Tree(E)  Type | 
|  | 
| band | Def p   q == if p  q else false  fi | 
 | |  | Thm*  p,q:  . (p   q)    | 
|  | 
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = >  body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
 InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) | 
|  | 
| case_ptn_var | Def Case ptn_var(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| ptn_con | Def ptn_con(T) == Atom+  +Atom+(T  T) | 
 | |  | Thm*  T:Type. ptn_con(T)  Type | 
|  | 
| case_ts_trace | Def Case ts_trace(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inr(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| case_ts_fvar | Def Case ts_fvar(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| case_ts_op | Def Case ts_op(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| case_ts_pvar | Def Case ts_pvar(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h | 
 | |  | Thm*  A:Type, l:A List. ||l||  1   hd(l)  A | 
 | |  | Thm*  A:Type, l:A List  . hd(l)  A | 
|  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t | 
 | |  | Thm*  A:Type, l:A List. tl(l)  A List | 
|  | 
| case_inr | Def inr(x) = >  body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) | 
|  | 
| tree_con | Def tree_con(E;T) == E+(T  T) | 
 | |  | Thm*  E,T:Type. tree_con(E;T)  Type | 
|  | 
| case_inl | Def inl(x) = >  body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) | 
|  | 
| case_tree_leaf | Def Case tree_leaf(x) = >  body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| case_node | Def Case x;y = >  body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) | 
|  | 
| case_ts_var | Def Case ts_var(x) = >  body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) |