WhoCites Definitions mb automata 3 Sections GenAutomata Doc

Who Cites decls mng?
decls_mngDef [[ds]] rho == [[d]] rho for d {d:dec()| d ds }
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl
dec_mng Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho
Thm* rho:Decl, d:dec(). [[d]] rho Decl
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
dec Def dec() == LabelSimpleType
Thm* dec() Type
dall Def D(i) for i I(x) == i:I. D(i)(x)
Thm* I:Type, D:(IDecl). D(i) for i I Decl
st_mng Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s)
Thm* rho:Decl, s:SimpleType. [[s]] rho Type
dbase Def x:y(a) == if a = x y else Top fi
Thm* x:Label, y:Type. x:y Decl
case_mk_dec Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1)
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
case Def Case(value) body == body(value,value)
st_lift Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top)
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type
top Def Top == Void given Void
Thm* Top Type
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
case_default Def Default = > body(value,value) == body
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))

Syntax:[[ds]] rho has structure: decls_mng(ds; rho)

About:
spreadproductlistconsconsnillist_ind
boolbfalsebtrueifthenelseassertunitvoidintnatural_numberint_eq
atomtokenatom_equniondecide
setisectisectlambdaapplyfunctionrecursive_def_notice
recuniversemembertoppropimpliesfalsetrueall!abstraction

WhoCites Definitions mb automata 3 Sections GenAutomata Doc