Who Cites decl? | |
decl | Def Decl == LabelType |
Thm* Decl{i} Type{i'} | |
record_pair | Def {p} == {1of(p)}{2of(p)} |
Thm* p:(DeclDecl). {p} Type | |
record | Def {d} == l:Labeldecl_type(d;l) |
Thm* d:Decl. {d} Type | |
decl_type | Def decl_type(d;x) == d(x) |
Thm* dec:Decl, x:Label. decl_type(dec;x) Type | |
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl | |
ioa | Def ioa{i:l}() == Collection(dec())Collection(dec())Collection(rel())Collection(pre())Collection(eff())Collection(frame()) |
Thm* ioa{i:l}() Type{i'} | |
ioa_all | Def ioa_all(I; i.A(i)) == mk_ioa(i:I. A(i).ds, i:I. A(i).da, i:I. A(i).init, i:I. A(i).pre, i:I. A(i).eff, i:I. A(i).frame) |
Thm* I:Type, A:(Iioa{i:l}()). ioa_all(I; i.A(i)) ioa{i:l}() | |
ioa_ds | Def t.ds == 1of(t) |
Thm* t:ioa{i:l}(). t.ds Collection(dec()) | |
sig | Def sig() == (LabelSimpleType)(Label(SimpleType List)) |
Thm* sig() Type | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
frame | Def frame() == LabelSimpleType(Label List) |
Thm* frame() Type | |
eff | Def eff() == LabelLabelSimpleTypesmt() |
Thm* eff() Type | |
pre | Def pre() == LabelLabelrel() |
Thm* pre() Type | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
smt | Def smt() == LabelTermSimpleType |
Thm* smt() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
sig_mng | Def [[s]] rho == < op.[[s.fun(op)]] rho,R.[[s.rel(R)]] rho > |
Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i}Decl{i'} | |
subtype | Def S T == x:S. x T |
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
Thm* rho:Decl, d:dec(). [[d]] rho Decl | |
col_union | Def (i:I. C(i))(x) == i:I. x C(i) |
Thm* T,I:Type, C:(ICollection(T)). (i:I. C(i)) Collection(T) | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
Thm* I:Type, D:(IDecl). D(i) for i I Decl | |
col | Def Collection(T) == TProp |
Thm* T:Type{i'}. Collection{i}(T) Type{i'} | |
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.frame Collection(frame()) | |
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.eff Collection(eff()) | |
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
Thm* t:ioa{i:l}(). t.pre Collection(pre()) | |
ioa_init | Def t.init == 1of(2of(2of(t))) |
Thm* t:ioa{i:l}(). t.init Collection(rel()) | |
Thm* t:ioa{i:l}(). t.init Fmla | |
ioa_da | Def t.da == 1of(2of(t)) |
Thm* t:ioa{i:l}(). t.da Collection(dec()) | |
mk_ioa | Def mk_ioa(ds, da, init, pre, eff, frame) == < ds,da,init,pre,eff,frame > |
Thm* ds,da:Collection(dec()), init:Collection(rel()), pre:Collection(pre()), eff:Collection(eff()), frame:Collection(frame()). mk_ioa(ds, da, init, pre, eff, frame) ioa{i:l}() | |
sig_fun | Def t.fun == 1of(t) |
Thm* t:sig(). t.fun LabelSimpleType | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
sig_rel | Def t.rel == 2of(t) |
Thm* t:sig(). t.rel Label(SimpleType List) | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
st_list_mng | Def [[l]] rho == reduce(s,m. [[s]] rhom;Prop;l) |
Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'} | |
st_mng | Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s) |
Thm* rho:Decl, s:SimpleType. [[s]] rho Type | |
dbase | Def x:y(a) == if a = x y else Top fi |
Thm* x:Label, y:Type. x:y Decl | |
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
case | Def Case(value) body == body(value,value) |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B | |
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type | |
top | Def Top == Void given Void |
Thm* Top Type | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
About: