|  | Who Cites decls  mng? | 
|  | 
| decls_mng | Def [[ds]] rho == [[d]] rho for d  {d:dec()| d  ds } | 
 | |  | Thm*  ds:Collection(dec()), rho:Decl. [[ds]] rho  Decl | 
|  | 
| ioa_all | Def ioa_all(I; i.A(i)) == mk_ioa(  i:I. A(i).ds,  i:I. A(i).da,  i:I. A(i).init,  i:I. A(i).pre,  i:I. A(i).eff,  i:I. A(i).frame) | 
 | |  | Thm*  I:Type, A:(I   ioa{i:l}()). ioa_all(I; i.A(i))  ioa{i:l}() | 
|  | 
| col_union | Def (  i:I. C(i))(x) ==  i:I. x  C(i) | 
 | |  | Thm*  T,I:Type, C:(I   Collection(T)). (  i:I. C(i))  Collection(T) | 
|  | 
| col_member | Def x  c == c(x) | 
 | |  | Thm*  T:Type, x:T, c:Collection(T). x  c  Prop | 
|  | 
| ioa | Def ioa{i:l}() == Collection(dec())  Collection(dec())  Collection(rel())  Collection(pre())  Collection(eff())  Collection(frame()) | 
 | |  | Thm* ioa{i:l}()  Type{i'} | 
|  | 
| dec | Def dec() == Label  SimpleType | 
 | |  | Thm* dec()  Type | 
|  | 
| dec_lbl | Def t.lbl == 1of(t) | 
 | |  | Thm*  t:dec(). t.lbl  Label | 
|  | 
| decl | Def Decl == Label   Type | 
 | |  | Thm* Decl{i}  Type{i'} | 
|  | 
| record_pair | Def {p} == {1of(p)}  {2of(p)} | 
 | |  | Thm*  p:(Decl  Decl). {p}  Type | 
|  | 
| record | Def {d} == l:Label   decl_type(d;l) | 
 | |  | Thm*  d:Decl. {d}  Type | 
|  | 
| decl_type | Def decl_type(d;x) == d(x) | 
 | |  | Thm*  dec:Decl, x:Label. decl_type(dec;x)  Type | 
|  | 
| ioa_ds | Def t.ds == 1of(t) | 
 | |  | Thm*  t:ioa{i:l}(). t.ds  Collection(dec()) | 
|  | 
| sig | Def sig() == (Label   SimpleType)  (Label   (SimpleType List)) | 
 | |  | Thm* sig()  Type | 
|  | 
| frame | Def frame() == Label  SimpleType  (Label List) | 
 | |  | Thm* frame()  Type | 
|  | 
| eff | Def eff() == Label  Label  SimpleType  smt() | 
 | |  | Thm* eff()  Type | 
|  | 
| pre | Def pre() == Label  Label  rel() | 
 | |  | Thm* pre()  Type | 
|  | 
| rel | Def rel() == relname()  (Term List) | 
 | |  | Thm* rel()  Type | 
|  | 
| smt | Def smt() == Label  Term  SimpleType | 
 | |  | Thm* smt()  Type | 
|  | 
| relname | Def relname() == SimpleType+Label | 
 | |  | Thm* relname()  Type | 
|  | 
| st | Def SimpleType == Tree(Label+Unit) | 
 | |  | Thm* SimpleType  Type | 
|  | 
| term | Def Term == Tree(ts()) | 
 | |  | Thm* Term  Type | 
|  | 
| ts | Def ts() == Label+Label+Label+Label+Label | 
 | |  | Thm* ts()  Type | 
|  | 
| lbl | Def Label == {p:Pattern|  ground_ptn(p) } | 
 | |  | Thm* Label  Type | 
|  | 
| sig_mng | Def [[s]] rho ==  <  op.[[s.fun(op)]] rho,  R.[[s.rel(R)]] rho > | 
 | |  | Thm*  s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho)  Decl{i}  Decl{i'} | 
|  | 
| ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) | 
 | |  | Thm*  t:ioa{i:l}(). t.eff  Collection(eff()) | 
|  | 
| ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) | 
 | |  | Thm*  t:ioa{i:l}(). t.pre  Collection(pre()) | 
|  | 
| ioa_init | Def t.init == 1of(2of(2of(t))) | 
 | |  | Thm*  t:ioa{i:l}(). t.init  Collection(rel()) | 
 | |  | Thm*  t:ioa{i:l}(). t.init  Fmla | 
|  | 
| ioa_da | Def t.da == 1of(2of(t)) | 
 | |  | Thm*  t:ioa{i:l}(). t.da  Collection(dec()) | 
|  | 
| sig_fun | Def t.fun == 1of(t) | 
 | |  | Thm*  t:sig(). t.fun  Label   SimpleType | 
|  | 
| pi1 | Def 1of(t) == t.1 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 1of(p)  A | 
|  | 
| dec_mng | Def [[d]] rho == Case(d) Case x : s = >   x:[[s]] rho | 
 | |  | Thm*  rho:Decl, d:dec(). [[d]] rho  Decl | 
|  | 
| dall | Def D(i) for i  I(x) ==  i:I. D(i)(x) | 
 | |  | Thm*  I:Type, D:(I   Decl). D(i) for i  I  Decl | 
|  | 
| col | Def Collection(T) == T   Prop | 
 | |  | Thm*  T:Type{i'}. Collection{i}(T)  Type{i'} | 
|  | 
| ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) | 
 | |  | Thm*  t:ioa{i:l}(). t.frame  Collection(frame()) | 
|  | 
| mk_ioa | Def mk_ioa(ds, da, init, pre, eff, frame) ==  < ds,da,init,pre,eff,frame > | 
 | |  | Thm*  ds,da:Collection(dec()), init:Collection(rel()), pre:Collection(pre()), eff:Collection(eff()), frame:Collection(frame()). mk_ioa(ds, da, init, pre, eff, frame)  ioa{i:l}() | 
|  | 
| ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = >  false  Case ptn_pr( < x, y > ) = >  ground_ptn(x)   ground_ptn(y) Default = >  true  (recursive) | 
 | |  | Thm*  p:Pattern. ground_ptn(p)    | 
|  | 
| assert | Def  b == if b  True else False fi | 
 | |  | Thm*  b:  . b  Prop | 
|  | 
| ptn | Def Pattern == rec(T.ptn_con(T)) | 
 | |  | Thm* Pattern  Type | 
|  | 
| sig_rel | Def t.rel == 2of(t) | 
 | |  | Thm*  t:sig(). t.rel  Label   (SimpleType List) | 
|  | 
| pi2 | Def 2of(t) == t.2 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 2of(p)  B(1of(p)) | 
|  | 
| st_list_mng | Def [[l]] rho == reduce(  s,m. [[s]] rho   m;Prop;l) | 
 | |  | Thm*  l:SimpleType List, rho:Decl{i}. [[l]] rho{i}  Type{i'} | 
|  | 
| st_mng | Def [[s]] rho == t_iterate(st_lift(rho);  x,y. x   y;s) | 
 | |  | Thm*  rho:Decl, s:SimpleType. [[s]] rho  Type | 
|  | 
| tree | Def Tree(E) == rec(T.tree_con(E;T)) | 
 | |  | Thm*  E:Type. Tree(E)  Type | 
|  | 
| dbase | Def  x:y(a) == if a =  x  y else Top fi | 
 | |  | Thm*  x:Label, y:Type.  x:y  Decl | 
|  | 
| case_mk_dec | Def Case lbl : typ = >  body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) | 
|  | 
| t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = >  n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = >  l(x) Default = >  True  (recursive) | 
 | |  | Thm*  E,A:Type, l:(E   A), n:(A   A   A), t:Tree(E). t_iterate(l;n;t)  A | 
|  | 
| eq_lbl | Def l1 =  l2 == Case(l1) Case ptn_atom(x) = >  Case(l2) Case ptn_atom(y) = >  x=  y  Atom Default = >  false  Case ptn_int(x) = >  Case(l2) Case ptn_int(y) = >  x=  y Default = >  false  Case ptn_var(x) = >  Case(l2) Case ptn_var(y) = >  x=  y  Atom Default = >  false  Case ptn_pr( < x, y > ) = >  Case(l2) Case ptn_pr( < u, v > ) = >  x =  u   y =  v Default = >  false  Default = >  false  (recursive) | 
 | |  | Thm*  l1,l2:Pattern. l1 =  l2    | 
|  | 
| case | Def Case(value) body == body(value,value) | 
|  | 
| case_default | Def Default = >  body(value,value) == body | 
|  | 
| band | Def p   q == if p  q else false  fi | 
 | |  | Thm*  p,q:  . (p   q)    | 
|  | 
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = >  body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) | 
|  | 
| case_ptn_var | Def Case ptn_var(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| ptn_con | Def ptn_con(T) == Atom+  +Atom+(T  T) | 
 | |  | Thm*  T:Type. ptn_con(T)  Type | 
|  | 
| reduce | Def reduce(f;k;as) == Case of as; nil  k ; a.as'  f(a,reduce(f;k;as'))  (recursive) | 
 | |  | Thm*  A,B:Type, f:(A   B   B), k:B, as:A List. reduce(f;k;as)  B | 
|  | 
| st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) | 
 | |  | Thm*  rho:(Label   Type). st_lift(rho)  (Label+Unit)   Type | 
|  | 
| tree_con | Def tree_con(E;T) == E+(T  T) | 
 | |  | Thm*  E,T:Type. tree_con(E;T)  Type | 
|  | 
| top | Def Top == Void given Void | 
 | |  | Thm* Top  Type | 
|  | 
| case_ptn_int | Def Case ptn_int(x) = >  body(x) cont(x1,z) == (  x1.inr(x2) = >  (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) | 
|  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h | 
 | |  | Thm*  A:Type, l:A List. ||l||  1   hd(l)  A | 
 | |  | Thm*  A:Type, l:A List  . hd(l)  A | 
|  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t | 
 | |  | Thm*  A:Type, l:A List. tl(l)  A List | 
|  | 
| case_inl | Def inl(x) = >  body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) | 
|  | 
| case_inr | Def inr(x) = >  body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) | 
|  | 
| case_tree_leaf | Def Case tree_leaf(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) | 
|  | 
| case_node | Def Case x;y = >  body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) | 
|  | 
| eq_atom | Def x=  y  Atom == if x=y  Atom  true  ; false  fi | 
 | |  | Thm*  x,y:Atom. x=  y  Atom    | 
|  | 
| eq_int | Def i=  j == if i=j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i=  j)    | 
|  | 
| case_ptn_atom | Def Case ptn_atom(x) = >  body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |