| Who Cites action effect? |
|
action_effect | Def action_effect(a;es;fs) == < e.smt | e < e es | e.kind = a > > + < mk_smt(f.var, f.var, f.typ) | f < f fs | ![](FONT/up.png) ![](FONT/not.png) a f.acts > > |
| | Thm* a:Label, es:Collection(eff()), fs:Collection(frame()). action_effect(a;es;fs) Collection(smt()) |
|
ioa_mentions_trace | Def ioa_mentions_trace(A) == ( e:eff(). e A.eff & mentions_trace(e.smt.term)) ( p:pre(). p A.pre & rel_mentions_trace(p.rel)) ( r:rel(). r A.init & rel_mentions_trace(r)) |
| | Thm* A:ioa{i:l}(). ioa_mentions_trace(A) Prop |
|
smts_eff_pred | Def smts_eff_pred(ss;p) == ( r p.smts_eff_rel(ss;r)) |
| | Thm* p:Fmla, ss:Collection(smt()). smts_eff_pred(ss;p) Fmla |
|
smts_eff_rel | Def smts_eff_rel(ss;r) == col_subst( x.smts_eff(ss;x);r) |
| | Thm* r:rel(), ss:Collection(smt()). smts_eff_rel(ss;r) Fmla |
|
trace_consistent_rel | Def trace_consistent_rel(rho;da;R;r) == i: ||r.args||. trace_consistent(rho;da;R;r.args[i]) |
| | Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(Label![](FONT/dash.png) Label![](FONT/dash.png) ![](FONT/then_med.png) ). trace_consistent_rel(rho;da;R;r) Prop |
|
smts_eff | Def smts_eff(ss;x) == smt_terms( < s ss | s.lbl = x > ) |
| | Thm* ss:Collection(smt()), x:Label. smts_eff(ss;x) Collection(Term) |
|
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
| | Thm* T:Type, c:Collection(T), Q:(T![](FONT/dash.png) Prop). < i c | Q(i) > Collection(T) |
|
col_subst | Def col_subst(c;r) == col_map_subst(as.rel_subst(as;r); < zip(rel_vars(r);s) | s col_list_prod(map(c;rel_vars(r))) > ) |
| | Thm* c:(Label![](FONT/dash.png) Collection(Term)), r:rel(). col_subst(c;r) Fmla |
| | Thm* c:(Label![](FONT/dash.png) Collection(Term)), r:rel(). col_subst(c;r) Collection(rel()) |
|
smt_terms | Def smt_terms(c) == < s.term | s c > |
| | Thm* c:Collection(smt()). smt_terms(c) Collection(Term) |
|
col_map_subst | Def col_map_subst(x.f(x);c) == < f(x) | x c > |
| | Thm* f:(((Label Term) List)![](FONT/dash.png) rel()), c:Collection((Label Term) List). col_map_subst(x.f(x);c) Collection(rel()) |
|
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
| | Thm* T,T':Type, f:(T![](FONT/dash.png) T'), c:Collection(T). < f(x) | x c > Collection(T') |
|
col_add | Def (a + b)(x) == x a x b |
| | Thm* T:Type, a,b:Collection(T). (a + b) Collection(T) |
|
col_accum | Def ( x c.f(x))(y) == x:T. x c & y f(x) |
| | Thm* T,T':Type, f:(T![](FONT/dash.png) Collection(T')), c:Collection(T). ( x c.f(x)) Collection(T') |
|
trace_consistent | Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t) ![](FONT/eq.png) subtype_rel(({a:( [[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > )))) |
| | Thm* rho:Decl, t:Term, da:Collection(dec()), R:(Label![](FONT/dash.png) Label![](FONT/dash.png) ![](FONT/then_med.png) ). trace_consistent(rho;da;R;t) Prop |
|
col_list_prod | Def col_list_prod(l)(x) == ||x|| = ||l|| & ( i: . i < ||x|| ![](FONT/eq.png) x[i] l[i]) |
| | Thm* T:Type, l:Collection(T) List. col_list_prod(l) Collection(T List) |
|
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
| | Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl |
|
col_member | Def x c == c(x) |
| | Thm* T:Type, x:T, c:Collection(T). x c Prop |
|
ioa | Def ioa{i:l}() == Collection(dec()) Collection(dec()) Collection(rel()) Collection(pre()) Collection(eff()) Collection(frame()) |
| | Thm* ioa{i:l}() Type{i'} |
|
dec | Def dec() == Label SimpleType |
| | Thm* dec() Type |
|
dec_lbl | Def t.lbl == 1of(t) |
| | Thm* t:dec(). t.lbl Label |
|
decl | Def Decl == Label![](FONT/dash.png) Type |
| | Thm* Decl{i} Type{i'} |
|
ioa_da | Def t.da == 1of(2of(t)) |
| | Thm* t:ioa{i:l}(). t.da Collection(dec()) |
|
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
| | Thm* t:ioa{i:l}(). t.eff Collection(eff()) |
|
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
| | Thm* t:ioa{i:l}(). t.frame Collection(frame()) |
|
pred | Def Fmla == Collection(rel()) |
| | Thm* Fmla{i} Type{i'} |
|
pre | Def pre() == Label Label rel() |
| | Thm* pre() Type |
|
rel | Def rel() == relname() (Term List) |
| | Thm* rel() Type |
|
eff | Def eff() == Label Label SimpleType smt() |
| | Thm* eff() Type |
|
smt | Def smt() == Label Term SimpleType |
| | Thm* smt() Type |
|
frame | Def frame() == Label SimpleType (Label List) |
| | Thm* frame() Type |
|
relname | Def relname() == SimpleType+Label |
| | Thm* relname() Type |
|
st | Def SimpleType == Tree(Label+Unit) |
| | Thm* SimpleType Type |
|
term | Def Term == Tree(ts()) |
| | Thm* Term Type |
|
ts | Def ts() == Label+Label+Label+Label+Label |
| | Thm* ts() Type |
|
sigma | Def ( d) == l:Label decl_type(d;l) |
| | Thm* d:Decl. ( d) Type |
|
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
lelt | Def i j < k == i j & j < k |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A ![](FONT/eq.png) False |
| | Thm* A:Prop. ( A) Prop |
|
frame_typ | Def t.typ == 1of(2of(t)) |
| | Thm* t:frame(). t.typ SimpleType |
|
frame_var | Def t.var == 1of(t) |
| | Thm* t:frame(). t.var Label |
|
rel_subst | Def rel_subst(as;r) == mk_rel(r.name, map( t.term_subst(as;t);r.args)) |
| | Thm* r:rel(), as:(Label Term) List. rel_subst(as;r) rel() |
|
term_subst | Def term_subst(as;t)
== iterate(statevar v- > apply_alist(as;v;v)
statevar v'- > apply_alist(as;v;v')
funsymbol f- > f
freevar f- > f
trace(P)- > trace(P)
x(y)- > x y
over t) |
| | Thm* t:Term, as:(Label Term) List. term_subst(as;t) Term |
|
tvar | Def l == tree_leaf(ts_var(l)) |
| | Thm* l:Label. l Term |
|
mk_smt | Def mk_smt(lbl, term, typ) == < lbl,term,typ > |
| | Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt() |
|
frame_acts | Def t.acts == 2of(2of(t)) |
| | Thm* t:frame(). t.acts Label List |
|
lbls_member | Def x ls == reduce( a,b. x = a ![](FONT/or.png) b;false ;ls) |
| | Thm* x:Label, ls:Label List. x ls ![](FONT/bool.png) |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n ![](FONT/eq.png) n < ||l|| ![](FONT/eq.png) l[n] A |
|
nth_tl | Def nth_tl(n;as) == if n![](FONT/le.png) 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
le_int | Def i![](FONT/le.png) j == ![](FONT/not.png) j < i |
| | Thm* i,j: . (i![](FONT/le.png) j) ![](FONT/bool.png) |
|
bnot | Def ![](FONT/not.png) b == if b false else true fi |
| | Thm* b: . ![](FONT/not.png) b ![](FONT/bool.png) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
eff_smt | Def t.smt == 2of(2of(2of(t))) |
| | Thm* t:eff(). t.smt smt() |
|
eff_kind | Def t.kind == 1of(t) |
| | Thm* t:eff(). t.kind Label |
|
term_mentions_guard | Def term_mentions_guard(g;t) == term_iterate( x.false ; x.false ; x.false ; x.false ; x.x = g; x,y. x ![](FONT/or.png) y;t) |
| | Thm* t:Term, g:Label. term_mentions_guard(g;t) ![](FONT/bool.png) |
|
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
| | Thm* rho:Decl, d:dec(). [[d]] rho Decl |
|
apply_alist | Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > )) |
| | Thm* T:Type, as:(Label T) List, l:Label, d:T. apply_alist(as;l;d) T |
|
dbase | Def x:y(a) == if a = x y else Top fi |
| | Thm* x:Label, y:Type. x:y Decl |
|
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x= y Atom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x= y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x= y Atom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = u![](FONT/and.png) y = v Default = > false Default = > false (recursive) |
| | Thm* l1,l2:Pattern. l1 = l2 ![](FONT/bool.png) |
|
ioa_init | Def t.init == 1of(2of(2of(t))) |
| | Thm* t:ioa{i:l}(). t.init Collection(rel()) |
| | Thm* t:ioa{i:l}(). t.init Fmla |
|
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
| | Thm* t:ioa{i:l}(). t.pre Collection(pre()) |
|
smt_term | Def t.term == 1of(2of(t)) |
| | Thm* t:smt(). t.term Term |
|
smt_lbl | Def t.lbl == 1of(t) |
| | Thm* t:smt(). t.lbl Label |
|
kind | Def kind(a) == 1of(a) |
| | Thm* d:Decl, a:( d). kind(a) Label |
| | Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern |
|
rel_name | Def t.name == 1of(t) |
| | Thm* t:rel(). t.name relname() |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 1of(p) A |
|
col | Def Collection(T) == T![](FONT/dash.png) Prop |
| | Thm* T:Type{i'}. Collection{i}(T) Type{i'} |
|
rel_mentions_trace | Def rel_mentions_trace(r) == reduce( x,y. mentions_trace(x) ![](FONT/or.png) y;false ;r.args) |
| | Thm* r:rel(). rel_mentions_trace(r) ![](FONT/bool.png) |
|
pre_rel | Def t.rel == 2of(2of(t)) |
| | Thm* t:pre(). t.rel rel() |
|
rel_vars | Def rel_vars(r) == reduce( t,vs. term_vars(t) @ vs;nil;r.args) |
| | Thm* r:rel(). rel_vars(r) Label List |
|
rel_args | Def t.args == 2of(t) |
| | Thm* t:rel(). t.args Term List |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
mentions_trace | Def mentions_trace(t)
== iterate(statevar x- > false
statevar x'- > false
funsymbol x- > false
freevar x- > false
trace(P)- > true
x(y)- > x ![](FONT/or.png) y
over t) |
| | Thm* t:Term. mentions_trace(t) ![](FONT/bool.png) |
|
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)![](FONT/and.png) ground_ptn(y) Default = > true (recursive) |
| | Thm* p:Pattern. ground_ptn(p) ![](FONT/bool.png) |
|
ptn | Def Pattern == rec(T.ptn_con(T)) |
| | Thm* Pattern Type |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l|| ![](FONT/int.png) |
| | Thm* ||nil|| ![](FONT/int.png) |
|
ts_var | Def ts_var(x) == inl(x) |
| | Thm* x:Label. ts_var(x) ts() |
|
ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
| | Thm* l:Label. trace(l) Term |
|
tfvar | Def l == tree_leaf(ts_fvar(l)) |
| | Thm* l:Label. l Term |
|
topr | Def f == tree_leaf(ts_op(f)) |
| | Thm* f:Label. f Term |
|
tpvar | Def l' == tree_leaf(ts_pvar(l)) |
| | Thm* l:Label. l' Term |
|
tree_leaf | Def tree_leaf(x) == inl(x) |
| | Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) |
| | Thm* E:Type, x:E. tree_leaf(x) Tree(E) |
|
bor | Def p ![](FONT/or.png) q == if p true else q fi |
| | Thm* p,q: . (p ![](FONT/or.png) q) ![](FONT/bool.png) |
|
find | Def (first x as s.t. P(x) else d) == Case of filter( x.P(x);as); nil d ; a.b a |
| | Thm* T:Type, P:(T![](FONT/dash.png) ![](FONT/then_med.png) ), as:T List, d:T. (first a as s.t. P(a) else d) T |
|
filter | Def filter(P;l) == reduce( a,v. if P(a) [a / v] else v fi;nil;l) |
| | Thm* T:Type, P:(T![](FONT/dash.png) ![](FONT/then_med.png) ), l:T List. filter(P;l) T List |
|
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B![](FONT/dash.png) B), k:B, as:A List. reduce(f;k;as) B |
|
term_vars | Def term_vars(t)
== iterate(statevar v- > [v]
statevar v'- > [v]
funsymbol f- > nil
freevar f- > nil
trace(P)- > nil
x(y)- > x @ y
over t) |
| | Thm* t:Term. term_vars(t) Label List |
|
term_iter | Def iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a;b)
over t)
== term_iterate( x.v(x);
x'.v'(x');
op.opr(op);
f.fvar(f);
tr.trace(tr);
a,b. comb(a;b);
t) |
| | Thm* A:Type, v,v',opr,fvar,trace:(Label![](FONT/dash.png) A), comb:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Term.
iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a,b)
over t)
A |
|
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate( x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
| | Thm* A:Type, v,op,f,p,tr:(Label![](FONT/dash.png) A), a:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Term. term_iterate(v;p;op;f;tr;a;t) A |
|
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > ![](FONT/dot.png) |
| | Thm* A:Type, v,op,f,p,t:(Label![](FONT/dash.png) A), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A |
|
st_mng | Def [[s]] rho == t_iterate(st_lift(rho); x,y. x![](FONT/dash.png) y;s) |
| | Thm* rho:Decl, s:SimpleType. [[s]] rho Type |
|
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
| | Thm* E,A:Type, l:(E![](FONT/dash.png) A), n:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Tree(E). t_iterate(l;n;t) A |
|
case_default | Def Default = > body(value,value) == body |
|
band | Def p![](FONT/and.png) q == if p q else false fi |
| | Thm* p,q: . (p![](FONT/and.png) q) ![](FONT/bool.png) |
|
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case | Def Case(value) body == body(value,value) |
|
eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom ![](FONT/bool.png) |
|
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j) ![](FONT/bool.png) |
|
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| | Thm* E:Type. Tree(E) Type |
|
ptn_con | Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |
|
zip | Def zip(as;bs) == Case of as; nil nil ; a.as' Case of bs; nil nil ; b.bs' [ < a,b > / zip(as';bs')] (recursive) |
| | Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1 T2) List |
|
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B), l:A List. map(f;l) B List |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B), l:A List . map(f;l) B List![](FONT/plus.png) |
|
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1 ![](FONT/eq.png) hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
clbl | Def $x == ptn_atom("$x") |
|
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
| | Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern |
| | Thm* x,y:Label. lbl_pr( < x, y > ) Label |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
tree_con | Def tree_con(E;T) == E+(T T) |
| | Thm* E,T:Type. tree_con(E;T) Type |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
mk_rel | Def mk_rel(name, args) == < name,args > |
| | Thm* name:relname(), args:Term List. mk_rel(name, args) rel() |
|
ptn_atom | Def ptn_atom(x) == inl(x) |
| | Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) |
| | Thm* x:Atom. ptn_atom(x) Pattern |
| | Thm* x:Atom. ptn_atom(x) Label |
|
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
| | Thm* T:Type, x:(T T). ptn_pr(x) ptn_con(T) |
| | Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern |
|
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
| | Thm* I:Type, D:(I![](FONT/dash.png) Decl). D(i) for i I Decl |
|
decl_type | Def decl_type(d;x) == d(x) |
| | Thm* dec:Decl, x:Label. decl_type(dec;x) Type |
|
tapp | Def t1 t2 == tree_node( < t1, t2 > ) |
| | Thm* t1,t2:Term. t1 t2 Term |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j) ![](FONT/bool.png) |
|
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
|
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
|
node | Def tree_node( < x, y > ) == tree_node( < x,y > ) |
| | Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E) |
|
ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
| | Thm* x:Label. ts_trace(x) ts() |
|
ts_fvar | Def ts_fvar(x) == inr(inr(inr(inl(x)))) |
| | Thm* x:Label. ts_fvar(x) ts() |
|
ts_op | Def ts_op(x) == inr(inr(inl(x))) |
| | Thm* x:Label. ts_op(x) ts() |
|
ts_pvar | Def ts_pvar(x) == inr(inl(x)) |
| | Thm* x:Label. ts_pvar(x) ts() |
|
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
| | Thm* rho:(Label![](FONT/dash.png) Type). st_lift(rho) (Label+Unit)![](FONT/dash.png) Type |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
tree_node | Def tree_node(x) == inr(x) |
| | Thm* E,T:Type, x:(T T). tree_node(x) tree_con(E;T) |
| | Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E) |