Who Cites pred? | |
pred | Def Fmla == Collection(rel()) |
Thm* Fmla{i} Type{i'} | |
col | Def Collection(T) == TProp |
Thm* T:Type{i'}. Collection{i}(T) Type{i'} | |
trace_consistent_pred | Def trace_consistent_pred(rho;da;R;p) == (rp.trace_consistent_rel(rho;da;R;r)) |
Thm* p:Fmla, rho:Decl, da:Collection(dec()), R:(LabelLabel). trace_consistent_pred(rho;da;R;p) Prop | |
trace_consistent_rel | Def trace_consistent_rel(rho;da;R;r) == i:||r.args||. trace_consistent(rho;da;R;r.args[i]) |
Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(LabelLabel). trace_consistent_rel(rho;da;R;r) Prop | |
trace_consistent | Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t) subtype_rel(({a:([[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > )))) |
Thm* rho:Decl, t:Term, da:Collection(dec()), R:(LabelLabel). trace_consistent(rho;da;R;t) Prop | |
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
decl | Def Decl == LabelType |
Thm* Decl{i} Type{i'} | |
pred_addprime | Def (P)' == (rP. < (r)' > ) |
Thm* P:Fmla. (P)' Fmla | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
sigma | Def (d) == l:Labeldecl_type(d;l) |
Thm* d:Decl. (d) Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
rel_addprime | Def (r)' == mk_rel(r.name, map(t.(t)';r.args)) |
Thm* r:rel(). (r)' rel() | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
col_singleton | Def < x > (y) == y = x T |
Thm* T:Type, x:T. < x > Collection(T) | |
col_accum | Def (xc.f(x))(y) == x:T. x c & y f(x) |
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T') | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
addprime | Def (t)' == term_iterate(x.x';x.x';op.op;f.f;P.trace(P);a,b. a b;t) |
Thm* t:Term. (t)' Term | |
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
rel_name | Def t.name == 1of(t) |
Thm* t:rel(). t.name relname() | |
mk_rel | Def mk_rel(name, args) == < name,args > |
Thm* name:relname(), args:Term List. mk_rel(name, args) rel() | |
col_all | Def (xc.P(x)) == x:T. x c P(x) |
Thm* T:Type, c:Collection(T), P:(TProp). (xc.P(x)) Prop | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
term_mentions_guard | Def term_mentions_guard(g;t) == term_iterate(x.false;x.false;x.false;x.false;x.x = g;x,y. x y;t) |
Thm* t:Term, g:Label. term_mentions_guard(g;t) | |
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A | |
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A | |
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
Thm* rho:Decl, d:dec(). [[d]] rho Decl | |
st_mng | Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s) |
Thm* rho:Decl, s:SimpleType. [[s]] rho Type | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
dbase | Def x:y(a) == if a = x y else Top fi |
Thm* x:Label, y:Type. x:y Decl | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
case_default | Def Default = > body(value,value) == body |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case | Def Case(value) body == body(value,value) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
tapp | Def t1 t2 == tree_node( < t1, t2 > ) |
Thm* t1,t2:Term. t1 t2 Term | |
ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
Thm* l:Label. trace(l) Term | |
tfvar | Def l == tree_leaf(ts_fvar(l)) |
Thm* l:Label. l Term | |
topr | Def f == tree_leaf(ts_op(f)) |
Thm* f:Label. f Term | |
tpvar | Def l' == tree_leaf(ts_pvar(l)) |
Thm* l:Label. l' Term | |
kind | Def kind(a) == 1of(a) |
Thm* d:Decl, a:(d). kind(a) Label | |
Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
clbl | Def $x == ptn_atom("$x") |
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern | |
Thm* x,y:Label. lbl_pr( < x, y > ) Label | |
lelt | Def i j < k == ij & j < k |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
node | Def tree_node( < x, y > ) == tree_node( < x,y > ) |
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E) | |
ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
Thm* x:Label. ts_trace(x) ts() | |
tree_leaf | Def tree_leaf(x) == inl(x) |
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) | |
Thm* E:Type, x:E. tree_leaf(x) Tree(E) | |
ts_fvar | Def ts_fvar(x) == inr(inr(inr(inl(x)))) |
Thm* x:Label. ts_fvar(x) ts() | |
ts_op | Def ts_op(x) == inr(inr(inl(x))) |
Thm* x:Label. ts_op(x) ts() | |
ts_pvar | Def ts_pvar(x) == inr(inl(x)) |
Thm* x:Label. ts_pvar(x) ts() | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
ptn_atom | Def ptn_atom(x) == inl(x) |
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) | |
Thm* x:Atom. ptn_atom(x) Pattern | |
Thm* x:Atom. ptn_atom(x) Label | |
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T) | |
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern | |
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
Thm* I:Type, D:(IDecl). D(i) for i I Decl | |
decl_type | Def decl_type(d;x) == d(x) |
Thm* dec:Decl, x:Label. decl_type(dec;x) Type | |
bor | Def p q == if p true else q fi |
Thm* p,q:. (p q) | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
tree_node | Def tree_node(x) == inr(x) |
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T) | |
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E) | |
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type | |
top | Def Top == Void given Void |
Thm* Top Type |
About: