WhoCites Definitions mb automata 4 Sections GenAutomata Doc

Who Cites pred?
pred Def Fmla == Collection(rel())
Thm* Fmla{i} Type{i'}
col Def Collection(T) == TProp
Thm* T:Type{i'}. Collection{i}(T) Type{i'}
dec Def dec() == LabelSimpleType
Thm* dec() Type
decl Def Decl == LabelType
Thm* Decl{i} Type{i'}
sig Def sig() == (LabelSimpleType)(Label(SimpleType List))
Thm* sig() Type
sig_mng Def [[s]] rho == < op.[[s.fun(op)]] rho,R.[[s.rel(R)]] rho >
Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i}Decl{i'}
rel Def rel() == relname()(Term List)
Thm* rel() Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
subtype Def S T == x:S. x T
term Def Term == Tree(ts())
Thm* Term Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
st_list_mng Def [[l]] rho == reduce(s,m. [[s]] rhom;Prop;l)
Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'}
sig_fun Def t.fun == 1of(t)
Thm* t:sig(). t.fun LabelSimpleType
st_mng Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s)
Thm* rho:Decl, s:SimpleType. [[s]] rho Type
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
assert Def b == if b True else False fi
Thm* b:. b Prop
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
st_lift Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top)
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
top Def Top == Void given Void
Thm* Top Type
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertunitvoidintnatural_numberatomtokenuniondecide
setisectlambdaapplyfunctionrecursive_def_notice
recuniversemembersubtypetoppropimpliesfalsetrueall
!abstraction

WhoCites Definitions mb automata 4 Sections GenAutomata Doc