Who Cites tc ioa? | |
tc_ioa | Def tc_ioa(A;de) == tc_pred(A.init;A.ds; < > ;de) & (p:pre(). p A.pre tc(p.rel;A.ds;dec_lookup(A.da;p.kind);de)) & (ef:eff(). ef A.eff mk_dec(ef.kind, ef.typ) A.da & tc_eff(ef;A.ds;de)) & (f:frame(). f A.frame mk_dec(f.var, f.typ) A.ds) |
Thm* A:ioa{i:l}(), de:sig(). tc_ioa(A;de) Prop | |
ioa_ds | Def t.ds == 1of(t) |
Thm* t:ioa{i:l}(). t.ds Collection(dec()) | |
frame_typ | Def t.typ == 1of(2of(t)) |
Thm* t:frame(). t.typ SimpleType | |
frame_var | Def t.var == 1of(t) |
Thm* t:frame(). t.var Label | |
tc_eff | Def tc_eff(ef;ds;de) == tc_smt(ef.smt;ds; < ef.typ > ;de) |
Thm* ef:eff(), ds:Collection(dec()), de:sig(). tc_eff(ef;ds;de) Prop | |
tc_smt | Def tc_smt(s;ds;da;de) == mk_dec(s.lbl, s.typ) ds & s.typ term_types(ds;da;de;s.term) |
Thm* s:smt(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_smt(s;ds;da;de) Prop | |
mk_dec | Def mk_dec(lbl, typ) == < lbl,typ > |
Thm* lbl:Label, typ:SimpleType. mk_dec(lbl, typ) dec() | |
tc_pred | Def tc_pred(P;ds;da;de) == r:rel(). r P tc(r;ds;da;de) |
Thm* P:Fmla, ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_pred(P;ds;da;de) Prop | |
tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & (i:. i < ||r.args|| (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False |
Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop | |
term_types | Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t) |
Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType) | |
dec_lookup | Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > > |
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType) | |
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) | |
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T') | |
st_app | Def st_app(c1;c2) == (s2c2.(s1c1.st_app1(s1;s2))) |
Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType) | |
col_accum | Def (xc.f(x))(y) == x:T. x c & y f(x) |
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T') | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.frame Collection(frame()) | |
frame | Def frame() == LabelSimpleType(Label List) |
Thm* frame() Type | |
ioa_da | Def t.da == 1of(2of(t)) |
Thm* t:ioa{i:l}(). t.da Collection(dec()) | |
eff_typ | Def t.typ == 1of(2of(2of(t))) |
Thm* t:eff(). t.typ SimpleType | |
eff_kind | Def t.kind == 1of(t) |
Thm* t:eff(). t.kind Label | |
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.eff Collection(eff()) | |
eff | Def eff() == LabelLabelSimpleTypesmt() |
Thm* eff() Type | |
pre_kind | Def t.kind == 1of(t) |
Thm* t:pre(). t.kind Label | |
pre_rel | Def t.rel == 2of(2of(t)) |
Thm* t:pre(). t.rel rel() | |
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
Thm* t:ioa{i:l}(). t.pre Collection(pre()) | |
pre | Def pre() == LabelLabelrel() |
Thm* pre() Type | |
st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < > |
Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType) | |
col_none | Def < > (x) == False |
Thm* T:Type. < > Collection(T) | |
ioa_init | Def t.init == 1of(2of(2of(t))) |
Thm* t:ioa{i:l}(). t.init Collection(rel()) | |
Thm* t:ioa{i:l}(). t.init Fmla | |
dec_lbl | Def t.lbl == 1of(t) |
Thm* t:dec(). t.lbl Label | |
rel_name | Def t.name == 1of(t) |
Thm* t:rel(). t.name relname() | |
smt_term | Def t.term == 1of(2of(t)) |
Thm* t:smt(). t.term Term | |
smt_lbl | Def t.lbl == 1of(t) |
Thm* t:smt(). t.lbl Label | |
sig_fun | Def t.fun == 1of(t) |
Thm* t:sig(). t.fun LabelSimpleType | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
eff_smt | Def t.smt == 2of(2of(2of(t))) |
Thm* t:eff(). t.smt smt() | |
dec_typ | Def t.typ == 2of(t) |
Thm* t:dec(). t.typ SimpleType | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
sig_rel | Def t.rel == 2of(t) |
Thm* t:sig(). t.rel Label(SimpleType List) | |
smt_typ | Def t.typ == 2of(2of(t)) |
Thm* t:smt(). t.typ SimpleType | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
smt | Def smt() == LabelTermSimpleType |
Thm* smt() Type | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
col_singleton | Def < x > (y) == y = x T |
Thm* T:Type, x:T. < x > Collection(T) | |
st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false); a. InjCase(y; y'. false; b. true)) Default = > false Default = > false (recursive) |
Thm* s1,s2:SimpleType. st_eq(s1;s2) | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
term_iter | Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t) |
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A | |
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A | |
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
case_default | Def Default = > body(value,value) == body |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
nat | Def == {i:| 0i } |
Thm* Type | |
case_relname_other | Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case | Def Case(value) body == body(value,value) |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
clbl | Def $x == ptn_atom("$x") |
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern | |
Thm* x,y:Label. lbl_pr( < x, y > ) Label | |
typ | Def t == tree_leaf(inl(t)) |
Thm* t:Label. t SimpleType | |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
ptn_atom | Def ptn_atom(x) == inl(x) |
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) | |
Thm* x:Atom. ptn_atom(x) Pattern | |
Thm* x:Atom. ptn_atom(x) Label | |
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T) | |
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern | |
tree_leaf | Def tree_leaf(x) == inl(x) |
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) | |
Thm* E:Type, x:E. tree_leaf(x) Tree(E) | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
Syntax: | tc_ioa(A;de) | has structure: | tc_ioa(A; de) |
About: