| Who Cites tc ioa? |
|
tc_ioa | Def tc_ioa(A;de) == tc_pred(A.init;A.ds; < > ;de) & ( p:pre(). p A.pre ![](FONT/eq.png) tc(p.rel;A.ds;dec_lookup(A.da;p.kind);de)) & ( ef:eff(). ef A.eff ![](FONT/eq.png) mk_dec(ef.kind, ef.typ) A.da & tc_eff(ef;A.ds;de)) & ( f:frame(). f A.frame ![](FONT/eq.png) mk_dec(f.var, f.typ) A.ds) |
| | Thm* A:ioa{i:l}(), de:sig(). tc_ioa(A;de) Prop |
|
ioa_ds | Def t.ds == 1of(t) |
| | Thm* t:ioa{i:l}(). t.ds Collection(dec()) |
|
frame_typ | Def t.typ == 1of(2of(t)) |
| | Thm* t:frame(). t.typ SimpleType |
|
frame_var | Def t.var == 1of(t) |
| | Thm* t:frame(). t.var Label |
|
tc_eff | Def tc_eff(ef;ds;de) == tc_smt(ef.smt;ds; < ef.typ > ;de) |
| | Thm* ef:eff(), ds:Collection(dec()), de:sig(). tc_eff(ef;ds;de) Prop |
|
tc_smt | Def tc_smt(s;ds;da;de) == mk_dec(s.lbl, s.typ) ds & s.typ term_types(ds;da;de;s.term) |
| | Thm* s:smt(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_smt(s;ds;da;de) Prop |
|
mk_dec | Def mk_dec(lbl, typ) == < lbl,typ > |
| | Thm* lbl:Label, typ:SimpleType. mk_dec(lbl, typ) dec() |
|
tc_pred | Def tc_pred(P;ds;da;de) == r:rel(). r P ![](FONT/eq.png) tc(r;ds;da;de) |
| | Thm* P:Fmla, ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_pred(P;ds;da;de) Prop |
|
tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & ( i: . i < ||r.args|| ![](FONT/eq.png) (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False |
| | Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop |
|
term_types | Def term_types(ds;da;de;t)
== iterate(statevar x- > dec_lookup(ds;x)
statevar x'- > dec_lookup(ds;x)
funsymbol op- > < de.fun(op) >
freevar x- > da
trace(P)- > < lbl_pr( < Trace, P > ) >
c1(c2)- > st_app(c1;c2)
over t) |
| | Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType) |
|
dec_lookup | Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > > |
| | Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType) |
|
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
| | Thm* T:Type, c:Collection(T), Q:(T![](FONT/dash.png) Prop). < i c | Q(i) > Collection(T) |
|
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
| | Thm* T,T':Type, f:(T![](FONT/dash.png) T'), c:Collection(T). < f(x) | x c > Collection(T') |
|
st_app | Def st_app(c1;c2) == ( s2 c2.( s1 c1.st_app1(s1;s2))) |
| | Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType) |
|
col_accum | Def ( x c.f(x))(y) == x:T. x c & y f(x) |
| | Thm* T,T':Type, f:(T![](FONT/dash.png) Collection(T')), c:Collection(T). ( x c.f(x)) Collection(T') |
|
col_member | Def x c == c(x) |
| | Thm* T:Type, x:T, c:Collection(T). x c Prop |
|
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
| | Thm* t:ioa{i:l}(). t.frame Collection(frame()) |
|
frame | Def frame() == Label SimpleType (Label List) |
| | Thm* frame() Type |
|
ioa_da | Def t.da == 1of(2of(t)) |
| | Thm* t:ioa{i:l}(). t.da Collection(dec()) |
|
eff_typ | Def t.typ == 1of(2of(2of(t))) |
| | Thm* t:eff(). t.typ SimpleType |
|
eff_kind | Def t.kind == 1of(t) |
| | Thm* t:eff(). t.kind Label |
|
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
| | Thm* t:ioa{i:l}(). t.eff Collection(eff()) |
|
eff | Def eff() == Label Label SimpleType smt() |
| | Thm* eff() Type |
|
pre_kind | Def t.kind == 1of(t) |
| | Thm* t:pre(). t.kind Label |
|
pre_rel | Def t.rel == 2of(2of(t)) |
| | Thm* t:pre(). t.rel rel() |
|
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
| | Thm* t:ioa{i:l}(). t.pre Collection(pre()) |
|
pre | Def pre() == Label Label rel() |
| | Thm* pre() Type |
|
st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < > |
| | Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType) |
|
col_none | Def < > (x) == False |
| | Thm* T:Type. < > Collection(T) |
|
ioa_init | Def t.init == 1of(2of(2of(t))) |
| | Thm* t:ioa{i:l}(). t.init Collection(rel()) |
| | Thm* t:ioa{i:l}(). t.init Fmla |
|
dec_lbl | Def t.lbl == 1of(t) |
| | Thm* t:dec(). t.lbl Label |
|
rel_name | Def t.name == 1of(t) |
| | Thm* t:rel(). t.name relname() |
|
smt_term | Def t.term == 1of(2of(t)) |
| | Thm* t:smt(). t.term Term |
|
smt_lbl | Def t.lbl == 1of(t) |
| | Thm* t:smt(). t.lbl Label |
|
sig_fun | Def t.fun == 1of(t) |
| | Thm* t:sig(). t.fun Label![](FONT/dash.png) SimpleType |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 1of(p) A |
|
eff_smt | Def t.smt == 2of(2of(2of(t))) |
| | Thm* t:eff(). t.smt smt() |
|
dec_typ | Def t.typ == 2of(t) |
| | Thm* t:dec(). t.typ SimpleType |
|
rel_args | Def t.args == 2of(t) |
| | Thm* t:rel(). t.args Term List |
|
sig_rel | Def t.rel == 2of(t) |
| | Thm* t:sig(). t.rel Label![](FONT/dash.png) (SimpleType List) |
|
smt_typ | Def t.typ == 2of(2of(t)) |
| | Thm* t:smt(). t.typ SimpleType |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A![](FONT/dash.png) Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
smt | Def smt() == Label Term SimpleType |
| | Thm* smt() Type |
|
dec | Def dec() == Label SimpleType |
| | Thm* dec() Type |
|
rel | Def rel() == relname() (Term List) |
| | Thm* rel() Type |
|
relname | Def relname() == SimpleType+Label |
| | Thm* relname() Type |
|
st | Def SimpleType == Tree(Label+Unit) |
| | Thm* SimpleType Type |
|
term | Def Term == Tree(ts()) |
| | Thm* Term Type |
|
ts | Def ts() == Label+Label+Label+Label+Label |
| | Thm* ts() Type |
|
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
col_singleton | Def < x > (y) == y = x T |
| | Thm* T:Type, x:T. < x > Collection(T) |
|
st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')![](FONT/and.png) st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false ); a. InjCase(y; y'. false ; b. true )) Default = > false Default = > false (recursive) |
| | Thm* s1,s2:SimpleType. st_eq(s1;s2) ![](FONT/bool.png) |
|
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x= y Atom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x= y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x= y Atom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = u![](FONT/and.png) y = v Default = > false Default = > false (recursive) |
| | Thm* l1,l2:Pattern. l1 = l2 ![](FONT/bool.png) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)![](FONT/and.png) ground_ptn(y) Default = > true (recursive) |
| | Thm* p:Pattern. ground_ptn(p) ![](FONT/bool.png) |
|
term_iter | Def iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a;b)
over t)
== term_iterate( x.v(x);
x'.v'(x');
op.opr(op);
f.fvar(f);
tr.trace(tr);
a,b. comb(a;b);
t) |
| | Thm* A:Type, v,v',opr,fvar,trace:(Label![](FONT/dash.png) A), comb:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Term.
iterate(statevar x- > v(x)
statevar x''- > v'(x')
funsymbol op- > opr(op)
freevar f- > fvar(f)
trace(tr)- > trace(tr)
a(b)- > comb(a,b)
over t)
A |
|
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate( x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
| | Thm* A:Type, v,op,f,p,tr:(Label![](FONT/dash.png) A), a:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Term. term_iterate(v;p;op;f;tr;a;t) A |
|
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > ![](FONT/dot.png) |
| | Thm* A:Type, v,op,f,p,t:(Label![](FONT/dash.png) A), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A |
|
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
| | Thm* E,A:Type, l:(E![](FONT/dash.png) A), n:(A![](FONT/dash.png) A![](FONT/dash.png) A), t:Tree(E). t_iterate(l;n;t) A |
|
case_default | Def Default = > body(value,value) == body |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n ![](FONT/eq.png) n < ||l|| ![](FONT/eq.png) l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l|| ![](FONT/int.png) |
| | Thm* ||nil|| ![](FONT/int.png) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
case_relname_other | Def Case x = > body(x) cont(x1,z) == ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
|
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
case | Def Case(value) body == body(value,value) |
|
ptn | Def Pattern == rec(T.ptn_con(T)) |
| | Thm* Pattern Type |
|
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
| | Thm* E:Type. Tree(E) Type |
|
band | Def p![](FONT/and.png) q == if p q else false fi |
| | Thm* p,q: . (p![](FONT/and.png) q) ![](FONT/bool.png) |
|
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom ![](FONT/bool.png) |
|
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j) ![](FONT/bool.png) |
|
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
nth_tl | Def nth_tl(n;as) == if n![](FONT/le.png) 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == ( x1.inr(x2) = > ( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1 ![](FONT/eq.png) hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
clbl | Def $x == ptn_atom("$x") |
|
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
| | Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern |
| | Thm* x,y:Label. lbl_pr( < x, y > ) Label |
|
typ | Def t == tree_leaf(inl(t)) |
| | Thm* t:Label. t SimpleType |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
ptn_con | Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |
|
tree_con | Def tree_con(E;T) == E+(T T) |
| | Thm* E,T:Type. tree_con(E;T) Type |
|
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
le_int | Def i![](FONT/le.png) j == ![](FONT/not.png) j < i |
| | Thm* i,j: . (i![](FONT/le.png) j) ![](FONT/bool.png) |
|
ptn_atom | Def ptn_atom(x) == inl(x) |
| | Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) |
| | Thm* x:Atom. ptn_atom(x) Pattern |
| | Thm* x:Atom. ptn_atom(x) Label |
|
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
| | Thm* T:Type, x:(T T). ptn_pr(x) ptn_con(T) |
| | Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern |
|
tree_leaf | Def tree_leaf(x) == inl(x) |
| | Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) |
| | Thm* E:Type, x:E. tree_leaf(x) Tree(E) |
|
not | Def A == A ![](FONT/eq.png) False |
| | Thm* A:Prop. ( A) Prop |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j) ![](FONT/bool.png) |
|
bnot | Def ![](FONT/not.png) b == if b false else true fi |
| | Thm* b: . ![](FONT/not.png) b ![](FONT/bool.png) |
|
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
|
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |