Definitions mb event system 1 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
leDef AB == B<A
Thm* i,j:. (ij Prop
nth_tlDef nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi  (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as A List
le_intDef ij == j<i
Thm* i,j:. (ij 
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 
tlDef tl(l) == Case of l; nil  nil ; h.t  t
Thm* A:Type, l:A List. tl(l A List
topDef Top == Void given Void
Thm* Top  Type

About:
listnillist_indboolbfalsebtrue
ifthenelsevoidintnatural_numberaddsubtractlessless_than
isectrecursive_def_noticeuniversemembertoppropall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 1 Sections EventSystems Doc