| Some definitions of interest. |
|
upto | Def upto(n) == if n= 0 nil else upto(n-1) @ [(n-1)] fi (recursive) |
| | Thm* n: . upto(n) n List |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
firstn | Def firstn(n;as)
Def == Case of as
Def == Canil nil
Def == Caa.as' if 0< n [a / firstn(n-1;as')] else nil fi
Def (recursive) |
| | Thm* A:Type, as:A List, n: . firstn(n;as) A List |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')]
Def (recursive) |
| | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
top | Def Top == Void given Void |
| | Thm* Top Type |