| | Some definitions of interest. |
|
| fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
| w-causl | Def e <c e' == e e,e'. e <loc e' isrcv(kind(e')) & e = sender(e') E^+ e' |
|
| w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| rel_plus | Def R^+(x,y) == n: . x R^n y |
| | | Thm* T:Type, R:(T T Type). R^+ T T Type |
|
| trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c) |
| | | Thm* T:Type, E:(T T Prop). (Trans x,y:T. E(x,y)) Prop |
|
| w-after | Def (x after e) == s(1of(e);2of(e)+1).x |
|
| w-first | Def first(e)
Def == if time(e)= 0 true
Def == i; isnull(a(loc(e);time(e)-1)) first(<loc(e),time(e)-1>)
Def == else false fi
Def (recursive) |
|
| w-pred | Def pred(e)
Def == if isnull(a(loc(e);time(e)-1)) pred(<loc(e),time(e)-1>)
Def == else <loc(e),time(e)-1> fi
Def (recursive) |
|
| w-loc | Def loc(e) == 1of(e) |
|
| w-vartype | Def vartype(i;x) == w.T(i,x) |
|
| w-when | Def (x when e) == s(1of(e);2of(e)).x |