| | Some definitions of interest. |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| w-snds | Def snds(l;t) == concat(map( t1.m(l;t1);upto(t))) |
|
| concat | Def concat(ll) == reduce( l,l'. l @ l';nil;ll) |
| | | Thm* T:Type, ll:(T List) List. concat(ll) T List |
|
| upto | Def upto(n) == if n= 0 nil else upto(n-1) @ [(n-1)] fi (recursive) |
| | | Thm* n: . upto(n) n List |
|
| append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
| lsrc | Def source(l) == 1of(l) |
| | | Thm* l:IdLnk. source(l) Id |
|
| map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')]
Def (recursive) |
| | | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
| w-onlnk | Def onlnk(l;mss) == filter( ms.mlnk(ms) = l;mss) |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |
|
| w-m | Def m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t) |