Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
w-sndsDef snds(l;t) == concat(map(t1.m(l;t1);upto(t)))
concatDef concat(ll) == reduce(l,l'l @ l';nil;ll)
Thm* T:Type, ll:(T List) List. concat(ll T List
uptoDef upto(n) == if n=0 nil else upto(n-1) @ [(n-1)] fi  (recursive)
Thm* n:. upto(n n List
appendDef as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive)
Thm* T:Type, as,bs:T List. (as @ bs T List
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mapDef map(f;as) == Case of as; nil  nil ; a.as'  [(f(a)) / map(f;as')]
Def (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
w-onlnkDef onlnk(l;mss) == filter(ms.mlnk(ms) = l;mss)
natDef  == {i:| 0i }
Thm*   Type
topDef Top == Void given Void
Thm* Top  Type
w-mDef m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t)

About:
productproductlistconsconsnillist_ind
ifthenelsevoidintnatural_numbersubtractsetisectlambdaapply
functionrecursive_def_noticeuniverseequalmembertopall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc