Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-compatibleDef M1 || M2
Def == M1 ||decl M2
Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2)))
Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2))))
Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2)))))
Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of(
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2)))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
ma-feasibleDef Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
ma-frameDef M.frame(k affects x)
Def == L != 1of(2of(2of(2of(2of(2of(2of(M)))))))(x) ==> deq-member(KindDeq;k;L)
ma-frame-compatibleDef ma-frame-compatible(AB)
Def == kx:(KndId). 
Def == (kx  dom(1of(2of(2of(2of(2of(A))))))
Def == (
Def == (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == (
Def == (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == (
Def == (deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == (deq-member(KindDeq;1of(kx);1of(B)))))))(2of(kx))))
Def == & (kx  dom(1of(2of(2of(2of(2of(B))))))
Def == & (
Def == & (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == & (
Def == & (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == & (
Def == & (deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == & (deq-member(KindDeq;1of(kx);1of(A)))))))(2of(kx))))
ma-joinDef M1  M2
Def == mk-ma(1of(M1 1of(M2);
Def == mk-ma(1of(2of(M1))  1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1)))  1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))))
ma-sframeDef M.sframe(k sends <l,tg>)
Def == L != 1of(2of(2of(2of(2of(2of(2of(2of(
Def == L != 1of(M))))))))(<l,tg>) ==> deq-member(KindDeq;k;L)
ma-sframe-compatibleDef ma-sframe-compatible(AB)
Def == kl:(KndIdLnk), tg:Id.
Def == (kl  dom(1of(2of(2of(2of(2of(2of(A)))))))
Def == (
Def == ((tg  map(p.1of(p);1of(2of(2of(2of(2of(2of(A))))))(kl)))
Def == (
Def == (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == (
Def == (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == (
Def == (deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == (deq-member(KindDeq;1of(kl);1of(B))))))))(<2of(kl),tg>)))
Def == & (kl  dom(1of(2of(2of(2of(2of(2of(B)))))))
Def == & (
Def == & ((tg  map(p.1of(p);1of(2of(2of(2of(2of(2of(B))))))(kl)))
Def == & (
Def == & (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == & (
Def == & (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == & (
Def == & (deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == & (deq-member(KindDeq;1of(kl);1of(A))))))))(<2of(kl),tg>)))
msgaDef MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
Thm* MsgA  Type{i'}
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
idlnk-deqDef IdLnkDeq == product-deq(Id;Id;IdDeq;product-deq(Id;;IdDeq;NatDeq))
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
product-deqDef product-deq(A;B;a;b) == <proddeq(a;b),prod-deq(A;B;a;b)>
assertDef b == if b True else False fi
Thm* b:b  Prop
decidableDef Dec(P) == P  P
Thm* A:Prop. Dec(A Prop
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-joinDef f  g == <1of(f) @ filter(a.a  dom(f);1of(g)),a.f(a)?g(a)>
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-apDef f(x) == 2of(f)(x)
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
mapDef map(f;as) == Case of as; nil  nil ; a.as'  [(f(a)) / map(f;as')]
Def (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
rcvDef rcv(ltg) == inl(<l,tg>)
Thm* l:IdLnk, tg:Id. rcv(ltg Knd
topDef Top == Void given Void
Thm* Top  Type

About:
pairspreadspreadproductproductlistconsnillist_ind
boolifthenelseassertdecidablevoidless_thanatomunioninlinrset
isectlambdaapplyfunctionrecursive_def_noticeuniverseequalmembertop
propimpliesandorfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc