| | Some definitions of interest. |
|
| w-Msg | Def Msg == Msg(w.M) |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| Msg | Def Msg(M) == l:IdLnk t:Id M(l,t) |
| | | Thm* M:(IdLnk Id Type). Msg(M) Type |
|
| dsys | Def Dsys == Id MsgA |
| | | Thm* Dsys Type{i'} |
|
| ma-da | Def M.da(a) == 1of(2of(M))(a)?Top |
|
| w-action | Def Action(i) == action(w-action-dec(w.TA;w.M;i)) |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| w-withlnk | Def withlnk(l;mss) == mapfilter( ms.2of(ms); ms.mlnk(ms) = l;mss) |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| eq_id | Def a = b == eqof(IdDeq)(a,b) |
| | | Thm* a,b:Id. a = b  |
|
| ma-ds | Def M.ds(x) == 1of(M)(x)?Top |
|
| ma-init | Def M.init(x,v) == x0 != 1of(2of(2of(M)))(x) ==> v = x0 1of(M)(x)?Void |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| d-m | Def M(i) == D(i) |
|
| lsrc | Def source(l) == 1of(l) |
| | | Thm* l:IdLnk. source(l) Id |
|
| mlnk | Def mlnk(m) == 1of(m) |
| | | Thm* M:(IdLnk Id Type), m:Msg(M). mlnk(m) IdLnk |
| | | Thm* the_es:ES, m:Msg. mlnk(m) IdLnk |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| rcv | Def rcv(l; tg) == inl(<l,tg>) |
| | | Thm* l:IdLnk, tg:Id. rcv(l; tg) Knd |
|
| subtype | Def S T == x:S. x T |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |
|
| w-valtype | Def valtype(i;a) == kindcase(kind(a);a.w.TA(i,a);l,tg.w.M(l,tg)) |
|
| w-M | Def w.M == 1of(2of(2of(w))) |
|
| w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |
|
| w-isnull | Def isnull(a) == isl(a) |
|
| w-kind | Def kind(a) == 1of(outr(a)) |
|
| w-m | Def m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t) |
|
| w-s | Def s(i;t).x == 1of(2of(2of(2of(w))))(i,t,x) |
|
| w-vartype | Def vartype(i;x) == w.T(i,x) |