Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
d-esDef es is an event system of D
Def == w:World, p:FairFifo. PossibleWorld(D;w) & es = ES(w ES
d-realizesDef D 
Def realizes es.P(es)
Def == D':Dsys. 
Def == D  D'  (w:World, p:FairFifo. PossibleWorld(D';w P(ES(w)))
d-realizes2Def D realizes2 es.P(es) == w:World, p:FairFifo. PossibleWorld(D;w P(ES(w))
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
ma-valtypeDef ma-valtype(dak) == da(k)?Top
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
es-MsgDef Msg == Msg(1of(2of(2of(2of(2of(es))))))
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
d-single-sendsDef d-single-sends(idsdaklf)(j)
Def == if eqof(IdDeq)(j,i) ma-single-sends(dsdaklf) else  fi
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-valtypeDef valtype(e) == if isrcv(e) rcvtype(e) else acttype(e) fi
es-isrcvDef isrcv(e) == isrcv(kind(e))
es-lnkDef lnk(e) == lnk(kind(e))
es-kindDef kind(e) == 1of(2of(2of(2of(2of(2of(2of(2of(es))))))))(e)
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
es-sendsDef sends(l;e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))))(l,e)
es-valDef val(e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))(e)
es-vartypeDef vartype(i;x) == 1of(2of(2of(es)))(i,x)
es-whenDef (x when e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))(x,e)
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
rcvDef rcv(ltg) == inl(<l,tg>)
Thm* l:IdLnk, tg:Id. rcv(ltg Knd
tagged-messagesDef tagged-messages(l;s;v;L) == map(x.<l,x>;tagged-list-messages(s;v;L))
topDef Top == Void given Void
Thm* Top  Type

About:
pairproductproductlistboolifthenelseassertvoidnatural_numberatom
unioninlsetisectlambdaapplyfunctionuniverseequal
membertoppropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc