Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-valtypeDef ma-valtype(dak) == da(k)?Top
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
w-actionDef Action(i) == action(w-action-dec(w.TA;w.M;i))
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
assertDef b == if b True else False fi
Thm* b:b  Prop
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
deq-memberDef deq-member(eq;x;L) == reduce(a,b. eqof(eq)(a,x b;false;L)
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
notDef A == A  False
Thm* A:Prop. (A Prop
w-valtypeDef valtype(i;a) == kindcase(kind(a);a.w.TA(i,a);l,tg.w.M(l,tg))
w-kindDef kind(a) == 1of(outr(a))
w-vartypeDef vartype(i;x) == w.T(i,x)
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
rcvDef rcv(ltg) == inl(<l,tg>)
Thm* l:IdLnk, tg:Id. rcv(ltg Knd
topDef Top == Void given Void
Thm* Top  Type
w-isnullDef isnull(a) == isl(a)

About:
pairspreadspreadproductproductlistboolbfalseifthenelseassert
voidatomunioninlsetisectlambdaapplyfunction
universeequalmembertoppropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc