| By: |
RepeatFor 3 (Analyze 0) THEN Unfolds [`es-vartype`;`es-initially`;`w-es`] 0 THEN Reduce 0 THEN Analyze -1 THEN (let ops (let (let (let (let (let (let (let (let (let (let (let (let (let (let (Repeat (Unfolds ops -1 THEN Reduce -1) THEN ExRepD THEN RepeatFor 2 (Thin -1) (THEN (AllHyps ( (THEN (AllHyps ( (THEN (AllHyps (( ((RWO Thm* ((THEN ((Reduce h) (THEN (AllHyps (( ((RWO Thm* ((THEN ((Reduce h) (THEN (Analyze 0 (THEN (Try Trivial) |
| 1 |
3. v : T 4. x : Id 5. w : World 6. p : FairFifo 7. FairFifo 8. 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 8. vartype(i@0;x@0) 9. 9. 9. 9. (valtype(i@0;a) 9. (valtype(i@0;a) 10. 10. (w.M(l,tg)) 10. (w.M(l,tg)) 11. 11. deq-member(IdDeq;x@0;1of(1of(2of(2of(if eqof(IdDeq)(i@0,i) 11. deq-member(IdDeq;x@0;1of(1of(2of(2of(if <<[x], 11. deq-member(IdDeq;x@0;1of(1of(2of(2of(else fi))))) 11. 11. s(i@0;0).x@0 11. = 11. 2of(1of(2of(2of(if eqof(IdDeq)(i@0,i) 11. 2of(1of(2of(2of(else fi)))) 11. (x@0) 11. 11. 11. 11. 11. 11. 11. 12. 12. (eqof(IdDeq)(x,x@0) 12. 12. s(i;0).x@0 = v 13. 13. 14. 15. vartype(i;x) 16. True 17. 17. deq-member(IdDeq;x@0;1of(1of(2of(2of(if eqof(IdDeq)(x,i) 17. deq-member(IdDeq;x@0;1of(1of(2of(2of(if <<[x], 17. deq-member(IdDeq;x@0;1of(1of(2of(2of(else fi))))) 17. 17. s(x;0).x@0 17. = 17. 2of(1of(2of(2of(if eqof(IdDeq)(x,i) 17. 2of(1of(2of(2of(else fi)))) 17. (x@0) 17. 17. 17. 17. 17. 17. 18. 18. 18. 18. (valtype(x;a) 18. (valtype(x;a) 19. 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 19. vartype(x;x@0) 20. vartype(i;x) | 29 steps |
About: