(16steps total) PrintForm Definitions Lemmas mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: rdist-property 1 1 2 1

1. R : Id
2. in : |R|IdLnk
3. out : |R|IdLnk
4. i : |R|
5. j : |R|
6. ring(R;in;out)
7. (k.x.n(x)^k+1(i) = j 
8. n:. (k.x.n(x)^k+1(i) = j)(n)
9. (k.x.n(x)^k+1(i) = j)(mu(k.x.n(x)^k+1(i) = j))
9. & (i@0:i@0<mu(k.x.n(x)^k+1(i) = j (k.x.n(x)^k+1(i) = j)(i@0))
10. mu(k.x.n(x)^k+1(i) = j 
  x.n(x)^d(i;j)(i) = j & (k:k<d(i;j x.n(x)^k(i) = j)


By: All Reduce THEN Subst (mu(k.x.n(x)^k+1(i) = j) ~ (d(i;j)-1)) -2


Generated subgoals:

1 8. n:x.n(x)^n+1(i) = j
9. x.n(x)^mu(k.x.n(x)^k+1(i) = j)+1(i) = j
9. & (i@0:i@0<mu(k.x.n(x)^k+1(i) = j x.n(x)^i@0+1(i) = j)
10. mu(k.x.n(x)^k+1(i) = j 
  mu(k.x.n(x)^k+1(i) = j) ~ (d(i;j)-1)

1 step
2 8. n:x.n(x)^n+1(i) = j
9. x.n(x)^d(i;j)-1+1(i) = j & (i@0:i@0<d(i;j)-1  x.n(x)^i@0+1(i) = j)
10. mu(k.x.n(x)^k+1(i) = j 
  x.n(x)^d(i;j)(i) = j & (k:k<d(i;j x.n(x)^k(i) = j)

8 steps

About:
boolassertnatural_numberaddsubtractless_thanlambdaapplyfunction
equalmembersqequalimpliesandallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(16steps total) PrintForm Definitions Lemmas mb event system 7 Sections EventSystems Doc