mb hybrid Sections GenAutomata Doc

Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2))

is mentioned by

Thm* E:EventStruct, P:((Label(|E| List))Prop). (f,g:(Label(|E| List)). (p:Label. g(p) f(p)) P(f) P(g)) (f,g:(Label(|E| List)). (a:|E|. p:Label. g(p) = filter(b.(b =msg=(E) a);f(p))) P(f) P(g)) (f,g,h:(Label(|E| List)). (p,q:Label. (xf(p).(yg(q).(x =msg=(E) y)))) (p:Label. h(p) = ((f(p)) @ (g(p)))) P(f) P(g) P(h)) switchable0(E)(local_deliver_property(E;P))[local_deliver_switchable]
Thm* E:EventStruct, P:TraceProperty(E), L,L1:|E| List. memorylessR(E) preserves P P(L) P((L -x =msg=(E) y L1))[memoryless_remove_msgs]
Thm* E:EventStruct, tr:|E| List. No-dup-deliver(E)(tr) (x,y:|E|. is-send(E)(x) is-send(E)(y) (y =msg=(E) x) loc(E)(x) = loc(E)(y) sublist(|E|;[x; y];tr))[P_no_dup_iff]
Thm* E:EventStruct, tr:|E| List. Causal(E)(tr) (tr':|E| List. tr' tr (xtr'.(ytr'.is-send(E)(y) & (y =msg=(E) x))))[P_causal_iff]
Def delayableR(E) == swap adjacent[(x =msg=(E) y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))][R_delayable]
Def AD-normal(E)(tr) == i:(||tr||-1). ((is-send(E)(tr[i])) (is-send(E)(tr[(i+1)])) (tr[i] =msg=(E) tr[(i+1)])) & ((x,y:||tr||. x < y & (is-send(E)(tr[x])) & (is-send(E)(tr[y])) & tr[x] delivered at time i+1 & tr[y] delivered at time i) loc(E)(tr[i]) = loc(E)(tr[(i+1)]))[switch_normal]
Def Macro x R_del(E) y == (x =msg=(E) y) & is-deliver(E)(x) & (is-send(E)(y)) (is-send(E)(x)) & is-deliver(E)(y)[R_del]
Def memorylessR(E)(L_1,L_2) == a:|E|. L_2 = filter(b.(b =msg=(E) a);L_1) |E| List[R_memoryless]
Def composableR(E)(L_1,L_2,L) == (xL_1.(yL_2.(x =msg=(E) y))) & L = (L_1 @ L_2) |E| List[R_composable]
Def R_ad_normal(tr)(a,b) == ((is-send(E)(a)) (is-send(E)(b)) (a =msg=(E) b)) & ((is-send(E)(a)) (is-send(E)(b)) (x,y:||tr||. x < y & (is-send(E)(tr[x])) & (is-send(E)(tr[y])) & (tr[x] =msg=(E) b) & (tr[y] =msg=(E) a)) loc(E)(a) = loc(E)(b))[R_ad_normal]
Def single-tag-decomposable(E)(L) == L = nil |E| List (L_1,L_2:Trace(E). L = (L_1 @ L_2) |E| List & L_2 = nil |E| List & (xL_1.(yL_2.(x =msg=(E) y))) & (m:Label. (xL_2.tag(E)(x) = m)))[single_tag_decomposable]
Def C(Q)(i) == k:||L||. Q(k) & (L[k] =msg=(E) L[i])[message_closure]
Def Causal(E)(tr) == i:||tr||. j:||tr||. ji & (is-send(E)(tr[j])) & (tr[j] =msg=(E) tr[i])[P_causal]
Def No-dup-deliver(E)(tr) == i,j:||tr||. (is-send(E)(tr[i])) (is-send(E)(tr[j])) (tr[j] =msg=(E) tr[i]) loc(E)(tr[i]) = loc(E)(tr[j]) i = j[P_no_dup]
Def Tag-by-msg(E)(tr) == i,j:||tr||. (tr[i] =msg=(E) tr[j]) tag(E)(tr[i]) = tag(E)(tr[j])[P_tag_by_msg]
Def x delivered at time k == (x =msg=(E) tr[k]) & (is-send(E)(tr[k]))[delivered_at]
Def switch_inv(E; tr) == i,j,k:||tr||. i < j (is-send(E)(tr[i])) (is-send(E)(tr[j])) tag(E)(tr[i]) = tag(E)(tr[j]) (tr[j] =msg=(E) tr[k]) (is-send(E)(tr[k])) (k':||tr||. k' < k & loc(E)(tr[k']) = loc(E)(tr[k]) & (tr[i] =msg=(E) tr[k']) & (is-send(E)(tr[k'])))[switch_inv2001_03_15_DASH_PM_DASH_12_53_21]

In prior sections: mb structures

Try larger context: GenAutomata

mb hybrid Sections GenAutomata Doc