Thm* E:EventStruct, P:((Label (|E| List)) Prop).
( f,g:(Label (|E| List)). ( p:Label. g(p) f(p))  P(f)  P(g)) 
( f,g:(Label (|E| List)).
( a:|E|. p:Label. g(p) = filter( b. (b =msg=(E) a);f(p)))  P(f)  P(g))

( f,g,h:(Label (|E| List)).
( p,q:Label. ( x f(p).( y g(q). (x =msg=(E) y)))) 
( p:Label. h(p) = ((f(p)) @ (g(p))))  P(f)  P(g)  P(h))

switchable0(E)(local_deliver_property(E;P)) | [local_deliver_switchable] |
Thm* E:EventStruct, P:TraceProperty(E), L,L1:|E| List.
memorylessR(E) preserves P  P(L)  P((L -x =msg=(E) y L1)) | [memoryless_remove_msgs] |
Thm* E:EventStruct, tr:|E| List.
No-dup-deliver(E)(tr)

( x,y:|E|.
is-send(E)(x) 
is-send(E)(y)  (y =msg=(E) x)  loc(E)(x) = loc(E)(y)  sublist(|E|;[x; y];tr)) | [P_no_dup_iff] |
Thm* E:EventStruct, tr:|E| List.
Causal(E)(tr)  ( tr':|E| List. tr' tr  ( x tr'.( y tr'.is-send(E)(y) & (y =msg=(E) x)))) | [P_causal_iff] |
Def delayableR(E)
== swap adjacent[ (x =msg=(E) y)
&  (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) &  (is-send(E)(y))] | [R_delayable] |
Def AD-normal(E)(tr)
== i: (||tr||-1).
( (is-send(E)(tr[i]))   (is-send(E)(tr[(i+1)]))  (tr[i] =msg=(E) tr[(i+1)]))
& (( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& tr[x] delivered at time i+1
& tr[y] delivered at time i)

loc(E)(tr[i]) = loc(E)(tr[(i+1)])) | [switch_normal] |
Def Macro
x R_del(E) y
==  (x =msg=(E) y)
& is-deliver(E)(x) & (is-send(E)(y)) (is-send(E)(x)) & is-deliver(E)(y) | [R_del] |
Def memorylessR(E)(L_1,L_2)
== a:|E|. L_2 = filter( b. (b =msg=(E) a);L_1) |E| List | [R_memoryless] |
Def composableR(E)(L_1,L_2,L)
== ( x L_1.( y L_2. (x =msg=(E) y))) & L = (L_1 @ L_2) |E| List | [R_composable] |
Def R_ad_normal(tr)(a,b)
== ( (is-send(E)(a))   (is-send(E)(b))  (a =msg=(E) b))
& ( (is-send(E)(a)) 
 (is-send(E)(b)) 
( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& (tr[x] =msg=(E) b)
& (tr[y] =msg=(E) a))

loc(E)(a) = loc(E)(b)) | [R_ad_normal] |
Def single-tag-decomposable(E)(L)
== L = nil |E| List 
( L_1,L_2:Trace(E).
L = (L_1 @ L_2) |E| List
& L_2 = nil |E| List
& ( x L_1.( y L_2. (x =msg=(E) y)))
& ( m:Label. ( x L_2.tag(E)(x) = m))) | [single_tag_decomposable] |
Def C(Q)(i) == k: ||L||. Q(k) & (L[k] =msg=(E) L[i]) | [message_closure] |
Def Causal(E)(tr)
== i: ||tr||. j: ||tr||. j i & (is-send(E)(tr[j])) & (tr[j] =msg=(E) tr[i]) | [P_causal] |
Def No-dup-deliver(E)(tr)
== i,j: ||tr||.
 (is-send(E)(tr[i])) 
 (is-send(E)(tr[j]))  (tr[j] =msg=(E) tr[i])  loc(E)(tr[i]) = loc(E)(tr[j])  i = j | [P_no_dup] |
Def Tag-by-msg(E)(tr)
== i,j: ||tr||. (tr[i] =msg=(E) tr[j])  tag(E)(tr[i]) = tag(E)(tr[j]) | [P_tag_by_msg] |
Def x delivered at time k == (x =msg=(E) tr[k]) &  (is-send(E)(tr[k])) | [delivered_at] |
Def switch_inv(E; tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
(tr[j] =msg=(E) tr[k]) 
 (is-send(E)(tr[k])) 
( k': ||tr||.
k' < k & loc(E)(tr[k']) = loc(E)(tr[k]) & (tr[i] =msg=(E) tr[k']) &  (is-send(E)(tr[k']))) | [switch_inv2001_03_15_DASH_PM_DASH_12_53_21] |