| Who Cites R ad normal? |
|
R_ad_normal | Def R_ad_normal(tr)(a,b)
== ((is-send(E)(a)) (is-send(E)(b)) (a =msg=(E) b))
& ((is-send(E)(a))
(is-send(E)(b))
(x,y:||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& (tr[x] =msg=(E) b)
& (tr[y] =msg=(E) a))
loc(E)(a) = loc(E)(b)) |
| | Thm* E:TaggedEventStruct, tr:|E| List. R_ad_normal(tr) |E||E|Prop |
|
event_loc |
Def loc(E) == 1of(2of(2of(2of(E)))) |
| |
Thm* E:EventStruct. loc(E) |E|Label |
|
lbl |
Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
select |
Def l[i] == hd(nth_tl(i;l)) |
| |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A |
|
event_msg_eq |
Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2)) |
| | Thm* E:EventStruct. =msg=(E) |E||E| |
|
assert |
Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
event_is_snd |
Def is-send(E) == 1of(2of(2of(2of(2of(E))))) |
| |
Thm* E:EventStruct. is-send(E) |E| |
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| |
Thm* A:Type, l:A List. ||l|| |
| |
Thm* ||nil|| |
|
int_seg |
Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
lelt |
Def i j < k == ij & j < k |
|
le |
Def AB == B < A |
| | Thm* i,j:. (ij) Prop |
|
not |
Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
event_msg |
Def msg(E) == 1of(2of(2of(E))) |
| |
Thm* E:EventStruct. msg(E) |E||MS(E)| |
|
event_msg_str |
Def MS(E) == 1of(2of(E)) |
| | Thm* E:EventStruct. MS(E) MessageStruct |
|
msg_eq |
Def =(M)(m_1,m_2)
== ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2)
(uid(M)(m_1)=uid(M)(m_2)) |
| | Thm* M:MessageStruct. =(M) |M||M| |
|
msg_id |
Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) |
| |
Thm* M:MessageStruct. uid(M) |M| |
|
msg_sender |
Def sender(MS) == 1of(2of(2of(2of(MS)))) |
| |
Thm* M:MessageStruct. sender(M) |M|Label |
|
msg_content |
Def content(MS) == 1of(2of(2of(MS))) |
| |
Thm* M:MessageStruct. content(M) |M||cEQ(M)| |
|
msg_content_eq |
Def cEQ(MS) == 1of(2of(MS)) |
| | Thm* M:MessageStruct. cEQ(M) DecidableEquiv |
|
eq_dequiv |
Def =(DE) == 1of(2of(DE)) |
| | Thm* E:DecidableEquiv. =(E) |E||E| |
|
pi2 |
Def 2of(t) == t.2 |
| |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) |
|
pi1 |
Def 1of(t) == t.1 |
| | Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A |
|
ground_ptn |
Def ground_ptn(p)
== Case(p)
Case ptn_var(v) = >
false
Case ptn_pr( < x, y > ) = >
ground_ptn(x)ground_ptn(y)
Default = > true
(recursive) |
| |
Thm* p:Pattern. ground_ptn(p) |
|
ptn |
Def Pattern == rec(T.ptn_con(T)) |
| |
Thm* Pattern Type |
|
nth_tl |
Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List |
|
eq_lbl |
Def l1 = l2
== Case(l1)
Case ptn_atom(x) = >
Case(l2)
Case ptn_atom(y) = >
x=yAtom
Default = > false
Case ptn_int(x) = >
Case(l2)
Case ptn_int(y) = >
x=y
Default = > false
Case ptn_var(x) = >
Case(l2)
Case ptn_var(y) = >
x=yAtom
Default = > false
Case ptn_pr( < x, y > ) = >
Case(l2)
Case ptn_pr( < u, v > ) = >
x = uy = v
Default = > false
Default = > false
(recursive) |
| |
Thm* l1,l2:Pattern. l1 = l2 |
|
case_ptn_var |
Def Case ptn_var(x) = > body(x) cont(x1,z)
== (x1.inr(x2) = >
(x1.inr(x2) = >
(x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
case_ptn_int |
Def Case ptn_int(x) = > body(x) cont(x1,z)
== (x1.inr(x2) = >
(x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h |
| |
Thm* A:Type, l:A List. ||l||1 hd(l) A |
| |
Thm* A:Type, l:A List. hd(l) A |
|
case_default |
Def Default = > body(value,value) == body |
|
band |
Def pq == if p q else false fi |
| | Thm* p,q:. (pq) |
|
case_lbl_pair |
Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case |
Def Case(value) body == body(value,value) |
|
ptn_con |
Def ptn_con(T) == Atom++Atom+(TT) |
| | Thm* T:Type. ptn_con(T) Type |
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t |
| |
Thm* A:Type, l:A List. tl(l) A List |
|
le_int |
Def ij == j < i |
| | Thm* i,j:. (ij) |
|
eq_int |
Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
case_inl |
Def inl(x) = > body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr |
Def inr(x) = > body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
lt_int |
Def i < j == if i < j true ; false fi |
| | Thm* i,j:. (i < j) |
|
bnot |
Def b == if b false else true fi |
| | Thm* b:. b |
|
eq_atom |
Def x=yAtom == if x=yAtomtrue; false fi |
| | Thm* x,y:Atom. x=yAtom |
|
case_ptn_atom |
Def Case ptn_atom(x) = > body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) |