| Who Cites single tag decomposable? |
|
single_tag_decomposable | Def single-tag-decomposable(E)(L)
== L = nil |E| List 
( L_1,L_2:Trace(E).
L = (L_1 @ L_2) |E| List
& L_2 = nil |E| List
& ( x L_1.( y L_2. (x =msg=(E) y)))
& ( m:Label. ( x L_2.tag(E)(x) = m))) |
|
event_tag |
Def tag(E) == 1of(2of(2of(2of(2of(2of(E)))))) |
| |
Thm* E:TaggedEventStruct. tag(E) |E| Label |
|
lbl |
Def Label == {p:Pattern| ground_ptn(p) } |
| | Thm* Label Type |
|
str_trace |
Def Trace(E) == |E| List |
|
carrier |
Def |S| == 1of(S) |
| | Thm* S:Structure. |S| Type |
|
l_all |
Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
event_msg_eq |
Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2)) |
| | Thm* E:EventStruct. =msg=(E) |E| |E|   |
|
assert |
Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
l_member |
Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
nat |
Def == {i: | 0 i } |
| | Thm* Type |
|
le |
Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
not |
Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
append |
Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| |
Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
event_msg |
Def msg(E) == 1of(2of(2of(E))) |
| |
Thm* E:EventStruct. msg(E) |E| |MS(E)| |
|
event_msg_str |
Def MS(E) == 1of(2of(E)) |
| | Thm* E:EventStruct. MS(E) MessageStruct |
|
msg_eq |
Def =(M)(m_1,m_2)
== ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2))) sender(M)(m_1) = sender(M)(m_2)
(uid(M)(m_1)= uid(M)(m_2)) |
| | Thm* M:MessageStruct. =(M) |M| |M|   |
|
msg_id |
Def uid(MS) == 1of(2of(2of(2of(2of(MS))))) |
| |
Thm* M:MessageStruct. uid(M) |M|   |
|
msg_sender |
Def sender(MS) == 1of(2of(2of(2of(MS)))) |
| |
Thm* M:MessageStruct. sender(M) |M| Label |
|
msg_content |
Def content(MS) == 1of(2of(2of(MS))) |
| |
Thm* M:MessageStruct. content(M) |M| |cEQ(M)| |
|
msg_content_eq |
Def cEQ(MS) == 1of(2of(MS)) |
| | Thm* M:MessageStruct. cEQ(M) DecidableEquiv |
|
eq_dequiv |
Def =(DE) == 1of(2of(DE)) |
| | Thm* E:DecidableEquiv. =(E) |E| |E|   |
|
pi2 |
Def 2of(t) == t.2 |
| |
Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
pi1 |
Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
ground_ptn |
Def ground_ptn(p)
== Case(p)
Case ptn_var(v) = >
false
Case ptn_pr( < x, y > ) = >
ground_ptn(x) ground_ptn(y)
Default = > true
(recursive) |
| |
Thm* p:Pattern. ground_ptn(p)  |
|
ptn |
Def Pattern == rec(T.ptn_con(T)) |
| |
Thm* Pattern Type |
|
eq_lbl |
Def l1 = l2
== Case(l1)
Case ptn_atom(x) = >
Case(l2)
Case ptn_atom(y) = >
x= y Atom
Default = > false
Case ptn_int(x) = >
Case(l2)
Case ptn_int(y) = >
x= y
Default = > false
Case ptn_var(x) = >
Case(l2)
Case ptn_var(y) = >
x= y Atom
Default = > false
Case ptn_pr( < x, y > ) = >
Case(l2)
Case ptn_pr( < u, v > ) = >
x = u y = v
Default = > false
Default = > false
(recursive) |
| |
Thm* l1,l2:Pattern. l1 = l2  |
|
case_default |
Def Default = > body(value,value) == body |
|
band |
Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
case_lbl_pair |
Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
|
case_ptn_var |
Def Case ptn_var(x) = > body(x) cont(x1,z)
== ( x1.inr(x2) = >
( x1.inr(x2) = >
( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
case |
Def Case(value) body == body(value,value) |
|
ptn_con |
Def ptn_con(T) == Atom+ +Atom+(T T) |
| | Thm* T:Type. ptn_con(T) Type |
|
select |
Def l[i] == hd(nth_tl(i;l)) |
| |
Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| |
Thm* A:Type, l:A List. ||l||  |
| |
Thm* ||nil||  |
|
eq_int |
Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
case_ptn_int |
Def Case ptn_int(x) = > body(x) cont(x1,z)
== ( x1.inr(x2) = >
( x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
cont
(hd(x1)
,z))
([x1]) |
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h |
| |
Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| |
Thm* A:Type, l:A List . hd(l) A |
|
nth_tl |
Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| |
Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t |
| |
Thm* A:Type, l:A List. tl(l) A List |
|
case_inl |
Def inl(x) = > body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
|
case_inr |
Def inr(x) = > body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
|
eq_atom |
Def x= y Atom == if x=y Atom true ; false fi |
| | Thm* x,y:Atom. x= y Atom  |
|
case_ptn_atom |
Def Case ptn_atom(x) = > body(x) cont(x1,z)
== InjCase(x1; x2. body(x2); _. cont(z,z)) |
|
le_int |
Def i j ==  j < i |
| | Thm* i,j: . (i j)  |
|
lt_int |
Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j)  |
|
bnot |
Def  b == if b false else true fi |
| | Thm* b: .  b  |