
 Prop
Prop
 Prop
Prop x,y,z:|E| List. P(x)
x,y,z:|E| List. P(x) 
 P(y)
 P(y) 
 (
 ( x
x x.(
x.( y
y y.
y. (x =msg=(E) y)))  &  z = (x @ y)
(x =msg=(E) y)))  &  z = (x @ y) 
 P(z)
 P(z) tr:|E| List. 
I(tr)
tr:|E| List. 
I(tr) 
 
 
 tr = nil
tr = nil 
 (
 
( L_1,L_2:|E| List.
 tr = (L_1 @ L_2)
  &
L_1,L_2:|E| List.
 tr = (L_1 @ L_2)
  &   L_2 = nil
  &  (
L_2 = nil
  &  ( x
x L_1.(
L_1.( y
y L_2.
L_2. (x =msg=(E) y)))
  &  (
(x =msg=(E) y)))
  &  ( m:Label. (
m:Label. ( x
x L_2.tag(E)(x) = m)))
L_2.tag(E)(x) = m)))
 tr:|E| List. ||tr||
tr:|E| List. ||tr|| n-1
n-1 
 (
 ( m:Label. P( < tr > _m))
m:Label. P( < tr > _m)) 
 I(tr)
 I(tr) 
 P(tr)
 P(tr) n
n tr = nil
tr = nil m:Label. P( < tr > _m)
m:Label. P( < tr > _m) L_2 = nil
L_2 = nil x
x L_1.(
L_1.( y
y L_2.
L_2. (x =msg=(E) y)))
(x =msg=(E) y))) x
x L_2.tag(E)(x) = m)
L_2.tag(E)(x) = m) n-1
n-1 P(L_1)
 P(L_1) tr ((Unfold `iseg` 0) THEN (InstConcl [L_2]))
 tr ((Unfold `iseg` 0) THEN (InstConcl [L_2]))
 h.
 (Unfold `R_safety` h) THEN (Unfold `preserved_by` h) THEN (Reduce h)
 THEN
 (Using [`x',tr] (BackThru h))))
h.
 (Unfold `R_safety` h) THEN (Unfold `preserved_by` h) THEN (Reduce h)
 THEN
 (Using [`x',tr] (BackThru h))))| 1 | 25. L_1  tr 26. I(L_1)  P(L_1) | 
About:
|  |  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |