(70steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: P causal switchable0 6 1

1. E: EventStruct
2. x: |E| List
3. y: |E| List
4. i:||x||. j:||x||. ji & is-send(E)(x[j]) & (x[j] =msg=(E) x[i])
5. i1: (||x||-1)
6. (x[i1] =msg=(E) x[(i1+1)])
7. is-send(E)(x[i1]) & is-send(E)(x[(i1+1)]) is-send(E)(x[i1]) & is-send(E)(x[(i1+1)])
8. y = swap(x;i1;i1+1)
9. i: ||y||

j:||y||. ji & is-send(E)(y[j]) & (y[j] =msg=(E) y[i])

By:
Inst Thm* L:T List, i,j:||L||. ||swap(L;i;j)|| = ||L|| [|E|;x;i1;i1+1]
THEN
AssertBY (||y|| = ||x||) (RevHypSubst -3 -1)
THEN
Inst Thm* L:T List, i,j:||L||. ||swap(L;i;j)|| = ||L|| [|E|;y;i1;i1+1]
THEN
Inst Thm* k:, i,j:k. (i, j) kk [||x||;i1;i1+1]


Generated subgoal:

110. ||swap(x;i1;i1+1)|| = ||x||
11. ||y|| = ||x||
12. ||swap(y;i1;i1+1)|| = ||y||
13. (i1, i1+1) ||x||||x||
j:||y||. ji & is-send(E)(y[j]) & (y[j] =msg=(E) y[i])


About:
listassertintnatural_numberaddsubtractapplyequalandorallexists

(70steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc