| Who Cites dequiv? |
|
dequiv | Def DecidableEquiv == T:Type E:T T   EquivRel(T)( (_1 E _2)) Top |
| | Thm* DecidableEquiv Type{i'} |
|
top |
Def Top == Void given Void |
| |
Thm* Top Type |
|
assert |
Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop |
|
trans |
Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c) |
| | Thm* T:Type, E:(T T Prop). Trans x,y:T. E(x,y) Prop |
|
sym |
Def Sym x,y:T. E(x;y) == a,b:T. E(a;b)  E(b;a) |
| | Thm* T:Type, E:(T T Prop). Sym x,y:T. E(x,y) Prop |
|
refl |
Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
| | Thm* T:Type, E:(T T Prop). Refl(T;x,y.E(x,y)) Prop |