(5steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: switch inv rel closure 1

1. E: TaggedEventStruct
2. tr: |E| List
3. ls: ||tr||
4. switch_inv(E)(tr)
5. i: ||tr||
6. j: ||tr||
7. i (switchR(tr)^*) ls
8. j (switchR(tr)^*) ls

tag(E)(tr[i]) = tag(E)(tr[j])

By:
Inst Thm* R,R2:(TTProp). Trans(T)(R2(_1,_2)) (x,y:T. (x R y) (x R2 y)) (x,y:T. (x (R^*) y) (x R2 y) x = y) [||tr||;switchR(tr);i,j. tag(E)(tr[i]) = tag(E)(tr[j])]
THEN
Try ((Unfolds [`trans`;`refl`] 0) THEN (ReduceSOAps 0))
THEN
All ReduceSOAps
THEN
All Reduce


Generated subgoals:

19. x: ||tr||
10. y: ||tr||
11. x switchR(tr) y
tag(E)(tr[x]) = tag(E)(tr[y])
29. x,y:||tr||. (x (switchR(tr)^*) y) tag(E)(tr[x]) = tag(E)(tr[y]) x = y
tag(E)(tr[i]) = tag(E)(tr[j])


About:
listnatural_numberlambdaapplyequal

(5steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc