(24steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: switch normal exists 2 2

1. E: TaggedEventStruct
2. tr: |E| List
3. switch_inv(E)(tr)
4. No-dup-send(E)(tr)
5. L': |E| List
6. tr (swap adjacent[R_ad_normal(tr)(x,y)]^*) L'
7. i:(||L'||-1). R_ad_normal(tr)(L'[i],L'[(i+1)])

AD-normal(E)(L')

By:
Unfold `switch_normal` 0
THEN
Reduce 0
THEN
ParallelOp -1
THEN
Unfold `R_ad_normal` -1
THEN
Reduce -1
THEN
ParallelOp -1
THEN
Unfold `delivered_at` -1
THEN
ExRepD
THEN
BackThruSomeHyp


Generated subgoal:

18. i: (||L'||-1)
9. is-send(E)(L'[i]) is-send(E)(L'[(i+1)]) (x,y:||tr||. x < y & is-send(E)(tr[x]) & is-send(E)(tr[y]) & (tr[x] =msg=(E) L'[(i+1)]) & (tr[y] =msg=(E) L'[i])) loc(E)(L'[i]) = loc(E)(L'[(i+1)])
10. x: ||L'||
11. y: ||L'||
12. x < y
13. is-send(E)(L'[x])
14. is-send(E)(L'[y])
15. L'[x] =msg=(E) L'[(i+1)]
16. is-send(E)(L'[(i+1)])
17. L'[y] =msg=(E) L'[i]
18. is-send(E)(L'[i])
x,y:||tr||. x < y & is-send(E)(tr[x]) & is-send(E)(tr[y]) & (tr[x] =msg=(E) L'[(i+1)]) & (tr[y] =msg=(E) L'[i])


About:
listassertnatural_numberaddsubtractless_thanapplyandallexists

(24steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc