is mentioned by
Thm* ( Thm* Thm* ( Thm* Thm* ( Thm* ((L (swap adjacent[ | [partial_sort] |
Thm* ( Thm* Thm* ( Thm* ((L guarded_permutation(T; Thm* (& ( | [partial_sort_exists_2] |
Thm* count(x < y in swap(L;n;n+1) | P(x,y)) Thm* = Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) | [count_pairs_swap] |
Thm* (x R^k y) Thm* Thm* ( Thm* (||L|| = k+1 | [rel_exp_list] |
Thm* a before b | [l_before_swap] |
Thm* i+1<||L|| Thm* Thm* ( Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] |
Thm* L2 = swap(L1;i;j) Thm* Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| Thm* & ( | [swapped_select] |
| [swap_select] | |
| [permute_list_select] | |
Def == | [swap_adjacent] |
Def == sum(if (i< | [count_pairs] |
| [permute_list] | |
Def == ||L|| = ||L1||+||L2|| Def == & increasing(f1;||L1||) & ( Def == & increasing(f2;||L2||) & ( Def == & ( | [interleaving_occurence] |
Def == Def == increasing(f1;||L1||) & ( Def == & increasing(f2;||L2||) & ( Def == & ( | [disjoint_sublists] |
Def == increasing(f;||L1||) & ( | [sublist_occurence] |
In prior sections: list 1 mb basic mb nat mb list 1
Try larger context:
MarkB generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html