| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as'))
Def (recursive) |
| | Thm* A,B:Type, f:(A B B), k:B, as:A List. reduce(f;k;as) B |