IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
partial sort exists112121211211111 1. T : Type
2. P : L:(T List)(||L||-1) 3. m : (T List) 4. L:T List, i:(||L||-1).
4. P(L,i) P(swap(L;i;i+1),i) & m(swap(L;i;i+1))<m(L)
5. L : T List
6. 0<||L||
7. f : (T List)(T List)
8. L:T List.
8. f(L)
8. =
8. if null(L)L 8. else let i = search(||L||-1;P(L)) in if i=0L else swap(L;i-1;i) fi fi
9. x:T List. n:. f(f^n(x)) = f^n(x)
10. n : 11. f(f^n(L)) = f^n(L)
12. i : (||f^n(L)||-1)
13. P(f^n(L),i)
14. (i:(||f^n(L)||-1). P(f^n(L),i)) (0<search(||f^n(L)||-1;P(f^n(L))))
15. 0<search(||f^n(L)||-1;P(f^n(L)))
16. P(f^n(L),search(||f^n(L)||-1;P(f^n(L)))-1)
17. j:(||f^n(L)||-1). j<search(||f^n(L)||-1;P(f^n(L)))-1 P(f^n(L),j)
18. n1 : 19. 0<n1 20. L:T List. ||f^n1-1(L)|| = ||L||
21. L1 : T List
||f^n1(L1)|| = ||L1||
By:
Unfold `fun_exp` 0 THEN RecUnfold `primrec` 0 THEN Reduce 0
THEN
Fold `fun_exp` 0
THEN
SplitOnConclITE
THEN
Reduce 0