is mentioned by
Thm* R preserves P R preserves Q R preserves P Q | [and_preserved_by] |
Thm* ((i:k. P(i)) 0<search(k;P)) Thm* & (0<search(k;P) P(search(k;P)-1) & (j:k. j<search(k;P)-1 P(j))) | [search_property] |
[flip_twice] | |
[flip_inverse] | |
[flip_bijection] | |
[flip_symmetry] | |
[sum_switch] | |
Thm* (x:T. m(f(x))m(x) & (m(f(x)) = m(x) f(x) = x)) Thm* Thm* (x:T. n:. f(f^n(x)) = f^n(x)) | [iteration_terminates] |
[fun_exp_add1_sub] | |
[fun_exp_add1] | |
[fun_exp_add] | |
[fun_exp_compose] | |
Thm* R1 preserves P R2 preserves P R1 R2 preserves P | [preserved_by_or] |
Thm* (Sym x,y:T. x R1 y) (Sym x,y:T. x R2 y) (Sym x,y:T. x (R1 R2) y) | [symmetric_rel_or] |
[rel_star_symmetric] | |
[rel_inverse_star] | |
[rel_inverse_exp] | |
[rel_star_weakening] | |
[rel_star_trans] | |
[rel_rel_star] | |
[rel_star_of_equiv] | |
Thm* Trans(T)(R2(_1,_2)) Thm* Thm* (x,y:T. (x R y) (x R2 y)) (x,y:T. (x (R^*) y) (x R2 y) x = y) | [rel_star_closure] |
[preserved_by_star] | |
[rel_star_monotonic] | |
[rel_star_transitivity] | |
[rel_star_monotone] | |
Thm* (x,y:T. (x R1 y) (x R2 y)) R2 preserves P R1 preserves P | [preserved_by_monotone] |
[rel_exp_monotone] | |
[rel_exp_add] | |
[decidable__rel_exp] | |
[rel_exp_wf] | |
Thm* (x:n, y:m. f(x,y) = g(x,y)) Thm* Thm* sum(f(x,y) | x < n; y < m) = sum(g(x,y) | x < n; y < m) | [double_sum_functionality] |
Thm* sum(f(x,y)-g(x,y) | x < n; y < m) = d Thm* Thm* sum(f(x,y) | x < n; y < m) = sum(g(x,y) | x < n; y < m)+d | [double_sum_difference] |
Thm* x1 = x2 y1 = y2 Thm* Thm* (x:n, y:m. (x = x1 & y = y1) (x = x2 & y = y2) f(x,y) = 0) Thm* Thm* sum(f(x,y) | x < n; y < m) = f(x1,y1)+f(x2,y2) | [pair_support_double_sum] |
Thm* sum(f(x) | x < n) = sum(f(x) | x < m)+sum(f(x+m) | x < n-m) | [sum_split] |
Thm* m = k Thm* Thm* (x:n. x = m x = k f(x) = 0) sum(f(x) | x < n) = f(m)+f(k) | [pair_support] |
[pigeon-hole] | |
Thm* p:(k( List)). Thm* sum(||p(j)|| | j < k) = n Thm* & (j:k, x,y:||p(j)||. x<y (p(j))[x]>(p(j))[y]) Thm* & (j:k, x:||p(j)||. (p(j))[x]<n & c((p(j))[x]) = j) | [finite-partition] |
Thm* (x:n. x = m f(x) = 0) sum(f(x) | x < n) = f(m) | [singleton_support_sum] |
[empty_support] | |
Thm* sum(f(x) | x < n) = f(m)+sum(if x=m 0 else f(x) fi | x < n) | [isolate_summand] |
Thm* sum(if p(i) f(i)+g(i) else f(i) fi | i < k) Thm* = Thm* sum(f(i) | i < k)+sum(if p(i) g(i) else 0 fi | i < k) | [sum-ite] |
[sum_lower_bound] | |
[sum_bound] | |
Thm* (x:k. f(x)g(x)) sum(f(x) | x < k)sum(g(x) | x < k) | [sum_le] |
Thm* sum(f(x)-g(x) | x < n) = d sum(f(x) | x < n) = sum(g(x) | x < n)+d | [sum_difference] |
Thm* (i:n. f(i) = g(i)) sum(f(x) | x < n) = sum(g(x) | x < n) | [sum_functionality] |
[sum_constant] | |
Thm* sum(f(x) | x < n)+sum(g(x) | x < n) = sum(f(x)+g(x) | x < n) | [sum_linear] |
[non_neg_sum] | |
Thm* (i:m. Dec(P(i))) Thm* Thm* (n,k:, f:(nm), g:(km). Thm* (increasing(f;n) Thm* (& increasing(g;k) Thm* (& (i:n. P(f(i))) Thm* (& (j:k. P(g(j))) Thm* (& (i:m. (j:n. i = f(j)) (j:k. i = g(j)))) | [increasing_split] |
[fappend_wf] | |
Thm* increasing(f;n) nondecreasing(g;n) increasing(fadd(f;g);n) | [fadd_increasing] |
[const_nondecreasing] | |
Thm* primrec(n+m;b;c) = primrec(n;primrec(m;b;c);i,t. c(i+m,t)) | [primrec_add] |
[primrec_wf] | |
Thm* 0<k Thm* Thm* Bij(k; k; f) Thm* Thm* f(k-1) = k-1 f (k-1)(k-1) & Bij((k-1); (k-1); f) | [bijection_restriction] |
Thm* increasing(f;n) Thm* Thm* increasing(g;k) Thm* Thm* (i:m. (j:n. i = f(j)) (j:k. i = g(j))) Thm* Thm* (j1:n, j2:k. f(j1) = g(j2)) m = n+k | [disjoint_increasing_onto] |
[injection_le] | |
[increasing_lower_bound] | |
[increasing_is_id] | |
[increasing_le] | |
[increasing_inj] | |
Thm* increasing(f;k) increasing(g;m) increasing(g o f;k) | [compose_increasing] |
[increasing_implies] | |
[id_increasing] | |
[preserved_by2] | |
[preserved_by] | |
[rel_implies] | |
[nondecreasing] |
In prior sections: core fun 1 well fnd int 1 bool 1 int 2 list 1 rel 1 sqequal 1 mb basic
Try larger context:
MarkB generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html