is mentioned by
Thm* ( Thm* Thm* Linorder(T;x,y.R(x,y)) | [linorder_lt_neg] |
Thm* Linorder(T;x,y.R(x,y)) | [linorder_le_neg] |
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* ( Thm* (strict_part(x,y.R(x,y);a;b) | [trans_imp_sp_trans_b] |
Thm* (Trans a,b:T. R(a,b)) Thm* Thm* ( Thm* (R(a,b) | [trans_imp_sp_trans_a] |
Thm* (Trans a,b:T. R(a,b)) | [trans_imp_sp_trans] |
Thm* Order(T;x,y.R(x,y)) Thm* Thm* ( Thm* Thm* ( | [order_split] |
Thm* ( Thm* Thm* (Linorder(T;x,y.R(x,y)) | [linorder_functionality_wrt_iff] |
Thm* ( Thm* Thm* (Order(T;x,y.R(x,y)) | [order_functionality_wrt_iff] |
Thm* ( Thm* Thm* (Connex(T;x,y.R(x,y)) Thm* ( Thm* (( Thm* ((strict_part(x,y.R(x,y);a;b) Thm* (( Thm* (( | [connex_iff_trichot] |
Thm* ( Thm* Thm* Connex(T;x,y.R(x,y)) | [connex_functionality_wrt_implies] |
Thm* ( Thm* Thm* (Connex(T;x,y.R(x,y)) | [connex_functionality_wrt_iff] |
| [strict_part_irrefl] | |
Thm* ( Thm* Thm* (AntiSym(T;x,y.R(x,y)) | [anti_sym_functionality_wrt_iff] |
| [sq_stable__eqfun_p] | |
| [squash_thru_equiv_rel] | |
Thm* (EquivRel x,y:T. R(x,y)) Thm* Thm* ( | [equiv_rel_self_functionality] |
Thm* T = T' Thm* Thm* ( Thm* Thm* ((EquivRel x,y:T. E(x,y)) | [equiv_rel_functionality_wrt_iff] |
Thm* (Trans x,y:T. R(x,y)) Thm* Thm* ( Thm* (Symmetrize(x,y.R(x,y);a;b) Thm* ( Thm* (Symmetrize(x,y.R(x,y);a';b') | [trans_rel_func_wrt_sym_self] |
Thm* Preorder(T;x,y.R(x,y)) | [symmetrized_preorder] |
Thm* (EquivRel x,y:T. R(x,y)) | [equiv_rel_subtyping] |
Thm* (Trans x,y:T. R(x,y)) Thm* Thm* ( | [trans_rel_self_functionality] |
Thm* ( Thm* Thm* ((Trans y,x:T. R(x,y)) | [trans_functionality_wrt_iff] |
Thm* ( Thm* Thm* ((Sym x,y:T. R(x,y)) | [sym_functionality_wrt_iff] |
Thm* ( | [refl_functionality_wrt_iff] |
| [irrefl] | |
| [connex] | |
| [st_anti_sym] | |
| [anti_sym] | |
| [eqfun_p] | |
| [trans] | |
| [sym] | |
| [refl] |
In prior sections: core well fnd int 1 bool 1
Try larger context:
StandardLIB
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html